• 제목/요약/키워드: scaled vortices

검색결과 7건 처리시간 0.02초

PIV기법을 이용한 저층 건물 지붕에서 발생되는 원추형 와의 구조에 대한 실험적 연구 (An Experimental Study for the Structure of Conical Vortex at the Low-Rise Building Roof by using a PIV Technique)

  • 지호성;정은호;김경천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.667-672
    • /
    • 2000
  • The Characteristics of the conical vortices on the roof surface of a low-rise building has been investigated by using a PIV(Particle Image Velocimerty) technique. The scaled model of TTU building with 1:92 scaling ratio was used. The Reynolds number based on the free stream velocity and the length of the model was $1.96{\times}10^5$. When the angle of attack for the building model is $45^{\circ}$, the conical vortices are occurred symmetrically and the center of vortices are changed with respect to the angle of the approaching flow. The rotating direction of the conical vortices found to be counter-rotating. The secondary vortex motions are investigated using the instantaneous flow field data.

  • PDF

자동차 후류에서 에어스포일러의 영향에 대한 PIV 측정 (Effects of the Air Spoiler on the Wake Behind a Road Vehicle by PIV Measurements)

  • 김진석;성재용;김정수;최종욱;김성초
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.136-143
    • /
    • 2006
  • A particle image velocimetry (PlV) technique has been applied to measure the quantitative flow field characteristics behind a road vehicle with/without an air spoiler attached on its trunk and to estimate its effect on the wake. A vehicle model scaled in the ratio of 1/43 is set up in the mid-section of a closed-loop water tunnel. The Reynolds number based on the vehicle length is $10^5$. To investigate the three-dimensional structure of the recirculation zone and vortices, measurements are carried out on the planes both parallel and perpendicular to the free stream, respectively. The results show significant differences in the recirculation region and the vorticity distributions according to the existence of the air spoiler. The focus and the saddle point, appearing just behind the air spoiler, are disposed differently along the spanwise direction. Regarding the streamwise vortices, the air spoiler produces large wing tip vortices. They have opposite rotational directions to C-pillar vortices which are commonly observed in case that the air spoiler is absent. The wing tip vortices generate the down-force and as a result, they can make the vehicle more stable in driving.

Energy-efficient flow control around blunt bodies

  • Yurchenko, Nina F.
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.15-25
    • /
    • 2014
  • The developed concept of smart flow control based on turbulence scale modification was applied to control a flow around a circular cylinder. The concept was realized using arrays of vortex-generators regularly spaced along a cylinder generatrix with a given step. Mechanical and thermal vortex-generators were tested, the latter having been based on the localized surface heating or plasma discharges initiated with microwave radiation near the surface. Thus depending on a particular engineering solution, flow transport properties could be modified in passive or active ways. Matched numerical and experimental investigations showed a possibility to delay flow separation and, accordingly, to improve the aerodynamic performance of blunt bodies.

Aeroelastic testing of a self-supported transmission tower under laboratory simulated tornado-like vortices

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hangan, Horia
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.199-213
    • /
    • 2022
  • The current study investigates the dynamic effects in the tornado-structure response of an aeroelastic self-supported lattice transmission tower model tested under laboratory simulated tornado-like vortices. The aeroelastic model is designed for a geometric scale of 1:65 and tested under scaled down tornadoes in the Wind Engineering, Energy and Environment (WindEEE) Research Institute. The simulated tornadoes have a similar length scale of 1:65 compared to the full-scale. An extensive experimental parametric study is conducted by offsetting the stationary tornado center with respect to the aeroelastic model. Such aeroelastic testing of a transmission tower under laboratory tornadoes is not reported in the literature. A multiaxial load cell is mounted underneath the base plate to measure the base shear forces and overturning moments applied to the model in three perpendicular directions. A three-axis accelerometer is mounted at the level of the second cross-arm to measure response accelerations to evaluate the natural frequencies through a free-vibration test. Radial, tangential, and axial velocity components of the tornado wind field are measured using cobra probes. Sensitivity analyses are conducted to assess the variation of the structural dynamic response associated with the location of the tornado relative to the lattice transmission tower. Three different layouts representing the change in the orientation of the tower model relative to the components of the tornado-induced loads are considered. The structural responses of the aeroelastic model in terms of base shear forces, overturning moments, and lateral accelerations are measured. The results are utilized to understand the dynamic response of self-supported transmission towers to the tornado-induced loads.

트러스형 리프트 게이트의 설치방향에 따른 진동 특성 (Dynamic Characteristics of Truss-Type Lift Gate According to Installation Direction)

  • 이성행;공보성
    • 한국산학기술학회논문지
    • /
    • 제17권12호
    • /
    • pp.120-127
    • /
    • 2016
  • 본 연구에서는 수문의 설치방향에 따른 최적의 설치방향을 규명하기 위하여, 모형 제작에 의한 수문 진동실험을 수행하고, 진동특성이 연구되어진다. 47.5m 원형게이트가 아크릴을 사용하여 1:31 축척으로 제작되고, 납으로 질량이 보완된다. 먼저 모형을 검증하기 위하여 모형의 고유진동수가 측정되고, 원형 수문의 유한요소 해석 값으로 부터 환산된 고유진동수와 비교된다. 모형은 1.6m 폭을 갖는 콘크리트 수로에서 정방향과 역방향 설치에 따른 각각의 실험이 이루어 졌다. 각 방향 실험에서는 수문 개방고와 상하류 수위에 따른 여러 조건에서 수직진동이 측정되어 졌다. 실험결과를 바탕으로 정뱡향과 역방향 설치에 대한 진동현상을 서로 비교 분석하였다. 정방향 모형은 수문이 많이 열렸을 때 하단부의 수평트러스 부재를 치는 뒤돌아 치는 와류에 의하여 진동이 크게 발생하였고, 작은 개방고에서 suction force에 의한 진동이 발생하였다. 그러나 역방향 모형에서는 이러한 현상이 발생하지 않는다. 마지막으로 95m 수문의 진동실험결과와 본 47.m의 실험결과를 같이 비교하여 평가하였다. 실험결과 여러 실험 조건에서 진동이 작게 측정되는 역방향 배치 모형이 더 합리적인 것으로 분석되었다.

NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구 (An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model)

  • 강승희;유기완
    • 한국항공우주학회지
    • /
    • 제45권2호
    • /
    • pp.85-91
    • /
    • 2017
  • 본 연구에서는 NREL 5 MW 해상풍력터빈 모형의 후류 유동장 분석을 위해 1/86 축소모형을 사용한 실험적 연구를 수행하였다. 정격출력 속도 11.4 m/s와 회전수 1,045 rpm 조건에서 열선풍속계를 사용하여 반경의 6배까지 후류에서 속도 결핍 및 난류도 변화를 측정하는 풍동시험을 수행하였다. 그 결과 풍력터빈의 후류에서의 속도결핍은 횡방향과 수직 방향으로는 반경의 2배 이내에서 회복됨을 볼 수 있었으며, 끝단 와류에 의한 영향은 반경의 5배 이후에는 나타나지 않음을 볼 수 있었다. 또한, 후류의 난류도는 블레이드 끝단 부근에서 크게 나타나며 길이방향으로 반경 거리까지는 급격한 감소가 일어나지만 이 이후부터 반경의 6배까지 유지되었다.

Application and optimal design of the bionic guide vane to improve the safety serve performances of the reactor coolant pump

  • Liu, Haoran;Wang, Xiaofang;Lu, Yeming;Yan, Yongqi;Zhao, Wei;Wu, Xiaocui;Zhang, Zhigang
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2491-2509
    • /
    • 2022
  • As an important device in the nuclear island, the nuclear coolant pump can continuously provide power for medium circulation. The vane is one of the stationary parts in the nuclear coolant pump, which is installed between the impeller and the casing. The shape of the vane plays a significant role in the pump's overall performance and stability which are the important indicators during the safety serve process. Hence, the bionic concept is firstly applied into the design process of the vane to improve the performance of the nuclear coolant pump. Taking the scaled high-performance hydraulic model (on a scale of 1:2.5) of the coolant pump as the reference, a united bionic design approach is proposed for the unique structure of the guide vane of the nuclear coolant pump. Then, a new optimization design platform is established to output the optimal bionic vane. Finally, the comparative results and the corresponding mechanism are analyzed. The conclusions can be gotten as: (1) four parameters are introduced to configure the shape of the bionic blade, the significance of each parameter is herein demonstrated; (2) the optimal bionic vane is successfully obtained by the optimization design platform, the efficiency performance and the head performance of which can be improved by 1.6% and 1.27% respectively; (3) when compared to the original vane, the optimized bionic vane can improve the inner flow characteristics, namely, it can reduce the flow loss and decrease the pressure pulsation amplitude; (4) through the mechanism analysis, it can be found out that the bionic structure can induce the spanwise velocity and the vortices, which can reduce drag and suppress the boundary layer separation.