• Title/Summary/Keyword: scaled distance

Search Result 113, Processing Time 0.024 seconds

A Study on the Prediction & Transformation of Blasting Vibration for Environmental Regulation Standard (발파진동의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • The estimation of proper prediction method and the transformation method of environmental regulation standard were carried out by measuring blasting vibration. Vibration velocity was more adequate than vibration level in the blasting design by scaled distance. Thus, design and construction mutt be controlled by vibration velocity, and it is required that the vibration velocity is transformed to vibration level to meet regulation standard. Three transformation methods were studied. First, transformation formula is derived from the shock vibration data only. The second method it the transformation by correlation equation of vibration velocity and vibration level measured at the same time. The last one is the transformation of vibration velocity by FFT. It seems to be difficult to estimate damages by these methods because that every method shows considerable error. But transformation formula of PPV component to vibration level was most practical.

  • PDF

First Reliable Record of the Needle-scaled Queenfish, Scomberoides tol (Perciformes: Carangidae), from Korea (한국산 전갱이과(Carangidae) 어류 1미기록종, Scomberoides tol)

  • Kim, Kyeong-Mu;Choi, Seung-ho;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.4
    • /
    • pp.444-449
    • /
    • 2018
  • Two specimens of Scomberoides tol (99.0 mm and 124.5 mm in total length), belonging to the family Carangidae, order Perciformes were collected from Korean waters using a gape net with wings and a hand net between 2014 and 2017. These specimens are characterized by having the origin of the soft-rayed portion of the dorsal fin just above the origin of the soft-rayed portion of the anal fin, dorsal spines not connected by fin membranes and posterior end of the maxilla and upper jaw not extending beyond the posterior margin of the eye. A comparison of mitochondrial DNA cytochrome c oxidase subunit I sequences indicated that these specimens matched Scomberoides tol (K2P distance, d = 0.002), but differed from other Scomberoides species (6.9-9.1%). This is the first reliable report of Scomberoides tol from Korea.

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Performance Analysis of the Localization Compensation Algorithm based on Measured Error Patterns of Distance in WPAN (WPAN에서 거리별 측정오차 패턴을 적용한 위치인식 보정 알고리즘의 성능 분석)

  • Choi, Chang-Yong;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1627-1632
    • /
    • 2010
  • The performance characteristics and the disadvantages in the compensation algorithm based on the Measured Error Patterns of Distance that is already developed are analyzed, and the localization compensation algorithm(DCA2) based on measured error patterns of distance in WPAN that is the enhanced version of DCA1 is supposed in this paper. From the experimental results, it is confirmed that the localization performance of DCA1 and DCA2 is superior than SDS-TWR as each average above 60% and 75% of the total localizing measurement points in 2 experimental regions, and the localization performance of DCA2 is especially better than SDS-TWR as 91% of the points in $15m{\times}15m$ experimental region. In addition to this, it is confirmed that DCA2 is better than DCA1 as each 16% and 22% of the total localizing measurement points in $10m{\times}10m$ and $15m{\times}15m$ scaled experimental regions, and the average localization errors of DCA1 and DCA2 are lower than SDS-TWR to each 7~12% and 20%. Thus, it can be inferred that DCA2 is the best localization algorithm among 3 localization algorithms SDS-TWR, and DCA2.

On Slimming down the Functions Room of Light Rail Transit Stations by Utilizing an Enhanced DSM Method (개선된 DSM 기법을 통한 경전철 정거장 기능실의 슬림화에 관한 연구)

  • Kim, Joo-Uk;Park, Kee-Jun;Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.927-939
    • /
    • 2015
  • It appears that the rapid advance in technology has allowed to broaden the variety of rail systems technology, thereby fostering new business opportunity in rail industry. The direction of rail systems operations is mainly two fold. In one direction, long distance operations between mega cities are pursued with help of high speed trains under development. In the other case, relatively short distance operations for covering intra-city or suburban area are becoming popular. A good example of the latter case is light rail transit (LRT) systems. Due to the short distance operation, it is thus expected that both the development and operation cost for LRT systems be reduced to some extent. The cost reduction desired in there can be gained by scaling down the sizes of both the trains and stations as compared to those of normal rail systems. However, it is not well known how the LRT stations can be scaled down. The objective of this paper is to study on how to slim down the stations (particularly, the functions room) of LRT systems. To achieve the objective, an approach is studied based on a modified method of design structure matrix (DSM). Specifically, using the enhanced DSM method, an integrated architecture is developed for the functions room, in which equipments are housed to perform the functions of electricity, signaling, and communication for LRT stations. The use of the result indicates that the desired reduction can be obtained with the approach taken in the paper.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Removal of Nano-scaled Fluorescence Particles on Wafer by the Femtosecond Laser Shockwave (펨토초레이저 충격파에 의한 형광 나노입자 제거)

  • Park, Jung-Kyu;Cho, Sung-Hak;Kim, Jae-Gu;Chang, Won-Seok;Whang, Kyung-Hyun;Yoo, Byung-Heon;Kim, Kwang-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.150-156
    • /
    • 2009
  • The removal of tiny particles adhered to surfaces is one of the crucial prerequisite for a further increase in IC fabrication, large area displays and for the process in nanotechnology. Various cleaning techniques (wet chemical cleaning, scrubbing, pressurized jets and ultrasonic processes) currently used to clean critical surfaces are limited to removal of micrometer-sized particles. Therefore the removal of sub-micron sized particles from silicon wafers is of great interest. For this purpose various cleaning methods are currently under investigation. In this paper, we report on experiments on the cleaning effect of 100nm sized fluorescence particles on silicon wafer using the plasma shockwave occurred by femtosecond laser. The plasma shockwave is main effect of femtosecond laser cleaning to remove particles. The removal efficiency was dependent on the gap distance between laser focus and surface but in some case surface was damaged by excessive laser intensity. These experiments demonstrate the feasibility of femtosecond laser cleaning using 100nm size fluorescence particles on wafer.

Optical Character Recognition for Hindi Language Using a Neural-network Approach

  • Yadav, Divakar;Sanchez-Cuadrado, Sonia;Morato, Jorge
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.117-140
    • /
    • 2013
  • Hindi is the most widely spoken language in India, with more than 300 million speakers. As there is no separation between the characters of texts written in Hindi as there is in English, the Optical Character Recognition (OCR) systems developed for the Hindi language carry a very poor recognition rate. In this paper we propose an OCR for printed Hindi text in Devanagari script, using Artificial Neural Network (ANN), which improves its efficiency. One of the major reasons for the poor recognition rate is error in character segmentation. The presence of touching characters in the scanned documents further complicates the segmentation process, creating a major problem when designing an effective character segmentation technique. Preprocessing, character segmentation, feature extraction, and finally, classification and recognition are the major steps which are followed by a general OCR. The preprocessing tasks considered in the paper are conversion of gray scaled images to binary images, image rectification, and segmentation of the document's textual contents into paragraphs, lines, words, and then at the level of basic symbols. The basic symbols, obtained as the fundamental unit from the segmentation process, are recognized by the neural classifier. In this work, three feature extraction techniques-: histogram of projection based on mean distance, histogram of projection based on pixel value, and vertical zero crossing, have been used to improve the rate of recognition. These feature extraction techniques are powerful enough to extract features of even distorted characters/symbols. For development of the neural classifier, a back-propagation neural network with two hidden layers is used. The classifier is trained and tested for printed Hindi texts. A performance of approximately 90% correct recognition rate is achieved.

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

The Reliability of Blast Vibration Equation (발파 진동식의 신뢰성)

  • Kim, Soo Il;Jeong, Sang Seom;Cho, Hoo Youn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.573-582
    • /
    • 1994
  • Blast vibration equations proposed previously are investigated. Special attention is given to the blast vibration equation which shows the best fitting to the geologic condition of Korea. The fittness of proposed blast vibration equation is analyzed and examined using many field data measured in Korea. The prediction of blast vibration equation using field data was performed by linear regression analysis. Moreover, after the prediction of each blast vibration equation, vibration velocity is recalculated on the basis of scaled distance at each equation. Reliability of regressioned blast vibration equation is observed by comparing predicted and measured velocity, which is divided into small-scale blasting of city and large-scale blasting of quarry. Based on this study, the best fitting equation to the Korean geologic condition is ROOT SCALING & CUBE ROOT SCALING proposed by USBM(United Nations Bureau of Mines). Also representative blast vibration equations depending on the different kinds of rock mass are proposed using measured and existing field data.

  • PDF