• Title/Summary/Keyword: scale up production

Search Result 344, Processing Time 0.029 seconds

Comparison of Bioactive Compounds and Antioxidant Activity according to Culture Systems in Artemisia fukudo

  • Eun Bi Jang;Jong-Du Lee;Hyejin Hyeon;Yong-Hwan Jung;Weon-Jong Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.99-99
    • /
    • 2022
  • Artemisia fukudo is a biennial plant and has been reported to have anticancer, anti-melanogenesis, and anti-inflammatory effects. However, it is difficult to produce biomass from A. fukudo, so it is not used as a material for cosmetics or pharmaceuticals. In vitro culture can stably produce biomass throughout the year. In this study, the culture system for producing the highest biomass and bioactive substances was compared. Ex vitro plants were collected in Pyoseon-eup, Jeju island in May 2021, and in vitro culture was harvested after culturing for 8 weeks (plantlet) and 4 weeks (adventitious roots), respectively. After harvest, total polyphenol content (TPC), total flavonoid content (TFC), and DPPH scavenging activity were analyzed. In biomass production, adventitious roots (FW: 5.1 g·100 ml-1, DW: 0.6 g·100 ml-1) were about 4 times higher than that of plantlets (FW: 1.8 g·200 ml-1, DW: 0.3 g·200 ml-1). Both TPC and TFC were highest in ex vitro plants (9.2 ㎍·mL-1, 31.6 ㎍·mL-1), and were 3.0 times and 1.8 times higher than those of plantlets (3.0 ㎍·mL-1, 17.8 ㎍·mL-1), respectively. The IC50 value of DPPH scavenging activity was also the best in ex vitro plants (69.8 ㎍·mL-1), followed by root root (184.4 ㎍·mL-1) and plants (325.3 ㎍·mL-1) in that order. Through additional elicitor treatment, scale-up, and advanced compounds analysis such as HPLC, it can be used as an industrial material.

  • PDF

Preventing Plasma Degradation of Plasma Resistant Ceramics via Surface Polishing (내플라즈마성 세라믹의 표면연마를 통한 플라즈마 열화방지)

  • Jae Ho Choi;Young Min Byun;Hyeong Jun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.130-135
    • /
    • 2023
  • Plasma-resistant ceramic (PRC) is a material used to prevent internal damage in plasma processing equipment for semiconductors and displays. The challenge is to suppress particles falling off from damaged surfaces and increase retention time in order to improve productivity and introduce the latest miniaturization process. Here, we confirmed the effect of suppressing plasma deterioration and reducing the etch rate through surface treatment of existing PRC with an initial illumination level of 200 nm. In particular, quartz glass showed a decrease in etch rate of up to 10%. Furthermore, it is believed that micro-scale secondary particles formed on the microstructure of each material grow as crystals during the fluoridation process. This is a factor that can act as a killer defect when dropped, and is an essential consideration when analyzing plasma resistance. The plasma etching suppression effect of the initial illumination is thought to be due to partial over etching at the dihedral angle of the material due to the sputtering of re-emission of Ar+-based cations. This means that plasma damage due to densification can also be interpreted in existing PRC studies. The research results are significant in that they present surface treatment conditions that can be directly applied to existing PRC for mass production and a new perspective to analyze plasma resistance in addition to simple etching rates.

  • PDF

Status of Maize Production and Distribution in South East Asia (동남아시아 옥수수 생산 및 유통현황)

  • Lee, Sang-Kyu;Song, Jun-Ho;Baek, Seong-Bum;Kwon, Young-Up;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.318-332
    • /
    • 2015
  • The maize production in South-eastern Asian countries showed a continuous increase with increasing poultry-livestock from the beginning of the 1990s to early 2010. Also the need for a new variety development of each contries was increased rapidly in the same period. Single-Cross hybrid varieties have been developed and supplied from 2001 instead of multi-cross maize varieties since 1992 in Indonesia. In Cambodia, CP group is mainly manufacturing feeds with most of the forage maize from farmers who are growing its seeds from the company. Cambodian main cultivars are varieties of multinational corporations such as DK8868 from Monsanto, NK6326, NK7328 from Syngenta and CP333 from CP group including local business company. Vietnam is the main maze importing country in South-Eastern Asia which had imported 13 times scale of amount compared to exports in average from 1990 to 2011. Vietnamese government has developed a range of varieties for improving their efficiency in production, such as the LVN-10 with political investments. Their production has been reached to 80% of the total. According to the 2012 MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries) data in Korea, domestic edible maize cultivation area was approximately 15,000ha. It showed 74,399 tons of production, 3.8% of food self-sufficiency in maize and around 0.9% of grain self-sufficiency rate. The consumption of grain is mostly rely on imports in Korea. To overcome the limit of the domestic seed market and increase maize self-sufficiency, the need to develop maze varieties for world-class is increasing at present through analyzing the market trend and prospect of the seed industry in South-eastern Asia.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

The Status of Chinese University Animation Education & Seeking Ways for Academic-Industrial Cooperation between Korea and China (중국 애니메이션 교육 현황과 기업체 산학협력 실태조사)

  • Lee, Won-Jung
    • Cartoon and Animation Studies
    • /
    • s.17
    • /
    • pp.69-81
    • /
    • 2009
  • Recently, the animation industry in China is rapidly developing drawing the government and the whole society's attention. To cope with a large-scale animation market by each region, they busily seek revitalization program of animation industry and are producing lots of animations that maximized their creative ability with its own competence and breaking the existing OEM production method. Up to now, when the scale of sales related with animation in China exceeds 10 times than that in Korea, the concrete studies on current state of animation education AS the basis of development of animation industry of China and the way of academic-industrial cooperation through that education are proved to be insufficient. Therefore, this study has surveyed and analyzed the current state of animation education by directly visiting 6 local universities related with animation. Equivocally, it has also examined current state of academic-industrial cooperation in industrial field related with animation in China by directly visiting around 10 main companies related with animation in China. Through this study, it has been possible to grasp the current state and problems of academic-industrial cooperation in China and various programs of academic-industrial cooperation system that can be implemented in universities and businesses which are intended to be suggested to them as based on this analysis. The touchstone of intensive studies on academic-industrial cooperation system in China could be suggested through this study, which has been previously unsatisfactory and it is considered to be worthy of application as many preceding studies that engraft on reality of education in the country today.

  • PDF

An Experimental Study on the Clogging of Sand Filter in a Model Filtration-Pond (천변여과지 모형에서 여재모래의 폐색현상 실험연구)

  • Jeong, Jae-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.681-685
    • /
    • 2013
  • A pilot-scale sand-box experiment was performed in order to investigate the effect of cross-flow velocity on the clogging of the filter sand in a model filtration pond. The clogging phenomenon was observed during the operation with the cross-flow varied in stages in a range of 0~40 cm/sec, and the experimental result was analyzed using a numerical code. Results showed that the cross-flow velocity in this range had no influence on the development of clogging and that clogging occurred mostly on the filter-surface. It was found that while the production rate decreased from $5m^3/m^2-day$ to $3m^3/m^2-day$ the clogging coefficient of the top 50 cm layer increased up to about 30,000 sec, which corresponded to 87% of the clogging coefficient of the total 2.4 m layer. Of the clogging coefficient of the top 50 cm layer, surface clogging constituted 90% while the other 10% was intermediate clogging. It was also found that the surface clogging increased while the intermediate clogging remained constant as the operation continued, and that filtrate turbidity along the filtration depth remained constant in spite of the increase in clogging.

Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model (GIS기반 InVEST모형을 이용한 네팔 Bagmati유역의 물생산량 산정)

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • Among various ecosystem services provided by the basin, this study deals with water yield (WY) estimation in the Bagmati basin of Nepal. Maps of where water used for different facilities like water supply, irrigation, hydropower etc. are generated helps planning and management of facilities. These maps also help to avoid unintended impacts on provision and production of services. Several studies have focused on the provision of ecosystem services (ES) on the basin. Most of the studies have are primarily focused on carbon storage and drinking water supply. Meanwhile, none of the studies has specifically highlighted water yield distribution on sub-basin scale and as per land use types in the Bagmati basin of Nepal. Thus, this study was originated with an aim to compute the total WY of the basin along with computation on a sub-basin scale and to study the WY capacity of different landuse types of the basin. For the study, InVEST water yield model, a popular model for ecosystem service assessment based on Budyko hydrological method is used along with ArcGIS. The result shows water yield per hectare is highest on sub-basin 5 ($15216.32m^3/ha$) and lowest on sub-basin 6 ($10847.15m^3/ha$). Likewise, built-up landuse has highest WY capacity followed by grassland and agricultural area. The sub-basin wise and LULC specific WY estimations are expected to provide scenarios for development of interrelated services on local scales. Also, these estimations are expected to promote sustainable land use policies and interrelated water management services.

Physiological and Sensory Characteristics of Demi-glace Sauce with Roux (루(Roux) 첨가에 따른 데미글라스 소스의 이화학적 및 관능적 특성)

  • Kim, Dong-Seok;Choi, Soo-Keun;Lee, Jong-Pil;Choi, Suk-Hyun
    • Culinary science and hospitality research
    • /
    • v.15 no.2
    • /
    • pp.150-160
    • /
    • 2009
  • This study analyzed the quality characteristics of demi-glace sauce with different addition of roux which is usually used as a thickener. The trust level and acceptability for commercial demi-glace sauce were surveyed in order to draw the visual idea and direction for the development of large scale commercial production of demi-glace sauce. Also, the optimal level of salt and roux content in the sauce was determined with various cooking conditions. As the roux content increased, the color became light and the viscosity of the sauce increased while pH, salinity and brix were not affected much by amount of roux. The professional chefs as well as general sensory panel preferred the demi-glace sauce prepared with 9% roux. To sum up, it can be claimed that the optimal conditions established in this study for commercial production of demi-glace sauce ensure the desired quality and economic feasibility.

  • PDF

Bioconversion of onion extract to improve the bioavailability of quercetin glycoconjugate (쿼세틴 복합체의 생물학적 이용성 향상을 위한 양파 추출물의 유산균 발효)

  • Yun, Yeo Jin;Lee, Ahyun;Nguyen, Thi My Tuyen;Park, Jong Tae;Yun, Sang Man;Kim, Jaehan
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.391-399
    • /
    • 2018
  • Bioconversion and fermentation of onion extract by lactic acid bacteria were carried out to enhance the bioavailability of quercetin through the increase of quercetin recovery and aglycone formation. Lactobacillus casei, L. plantarum, and Kluyveromyces lactis were selected as the optimum strains for bioconversion. The environmental conditions to maximize the conversion ratio between glycoconjugate and quercetin aglycone have been evaluated. The concentrations of quercetin after fermentation of onion slurry by K. lactis and L. casei increased to 260% and 318%, respectively; however, the quercetin concentrations decreased after 48 hours of fermentation. Additionally, the quercetin hexose concentration increased to almost 141%. Controlling the initial pH of the onion juice increased the lactic acid production by L. casei and L. plantarum by more than two-fold. Meanwhile, the concentration of quercetin hexose decreased rapidly with the increased production of aglycones. The scale-up experiments showed the same fermentation efficiency; however, thermal sterilization reduced the quercetin glycone concentrations drastically.

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF