• Title/Summary/Keyword: scalable video coding

Search Result 240, Processing Time 0.024 seconds

Efficient scalable method of H.264 video coding for network transport (네트워크 전송을 위한 H.264 비디오의 효율적인 계층화 방법)

  • Hwang, Jeong-Taek;Park, Seung-Ho;Suh, Doug-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.192-194
    • /
    • 2005
  • Acceptance of the international standards for video compression, such as H.261, MPEG-1 and MPEG-2, along with the developments in video codec hardware, has created an explosion of application. Among these, the long time quest for long-distance digital video transmission causes an increasing interest in transporting compressed video over networks which are nontraditional for this purpose, including asynchronous transfer mode networks, the Internet, and cellular and wireless channels. Transmission of compression video over packet network is improved for error resilience. And layered video coding techniques improves error resilience. We present a efficient method of scalable video coding for low bandwidth.

  • PDF

Overview of H.264/AVC Scalable Extension (H.264/AVC-Scalable Extension의 표준화 연구동향과 알고리즘 분석)

  • Park Seong-ho;Kim Wonha;Han Woo-jin
    • Journal of Broadcast Engineering
    • /
    • v.10 no.4 s.29
    • /
    • pp.515-527
    • /
    • 2005
  • A next-generation codec should be developed to be a scalable video codec(SVC) that not only maximizes the coding efficiency but also adaptively copes with the various communication devices and the variation of network environments. To meet these requirements, Joint Video Team (JVT) of ISO/IEC and ITU-T is standardizing H.264/AVC based SVC. In this paper, we introduce research directions and status on SVC standardization and also analyze techniques and algorithms adopted in the current SVC.

CHROMA FORMAT SCALABLE VIDEO CODING

  • Jia, Jie;Kim, Hae-Kwang;Choi, Hae-Chul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.23-27
    • /
    • 2009
  • A scalable video coding (SVC) extension to the H.264/AVC standard has been developed by the Joint Video Team (JVT). SVC provides spatial, temporal and quality scalability with high coding efficiency and low complexity. SVC is now developing the extension of the first version including color format scalability. The paper proposes to remove some luminance related header and luminance coefficients when an enhancement layer adds only additional color information to its lower layer. Experimental results shows 0.6 dB PSNR gain on average in coding efficiency compared with an approach using the existing SVC standard.

  • PDF

Efficient Media Synchronization Mechanism for SVC Video Transport over IP Networks

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.441-450
    • /
    • 2008
  • The scalable extension of H.264, known as scalable video coding (SVC) has been the main focus of the Joint Video Team's work and was finalized at the end of 2007. Synchronization between media is an important aspect in the design of a scalable video streaming system. This paper proposes an efficient media synchronization mechanism for SVC video transport over IP networks. To support synchronization between video and audio bitstreams transported over IP networks, a real-time transport protocol/RTP control protocol (RTP/RTCP) suite is usually employed. To provide an efficient mechanism for media synchronization between SVC video and audio, we suggest an efficient RTP packetization mode for inter-layer synchronization within SVC video and propose a computationally efficient RTCP packet processing method for inter-media synchronization. By adopting the computationally simple RTCP packet processing, we do not need to process every RTCP sender report packet for inter-media synchronization. We demonstrate the effectiveness of the proposed mechanism by comparing its performance with that of the conventional method.

  • PDF

Joint Source/Channel Coding Based on Two-Dimensional Optimization for Scalable H.264/AVC Video

  • Li, Xiao-Feng;Zhou, Ning;Liu, Hong-Sheng
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.155-162
    • /
    • 2011
  • The scalable extension of the H.264/AVC video coding standard (SVC) demonstrates superb adaptability in video communications. Joint source and channel coding (JSCC) has been shown to be very effective for such scalable video consisting of parts of different significance. In this paper, a new JSCC scheme for SVC transmission over packet loss channels is proposed which performs two-dimensional optimization on the quality layers of each frame in a rate-distortion (R-D) sense as well as on the temporal hierarchical structure of frames under dependency constraints. To compute the end-to-end R-D points of a frame, a novel reduced trellis algorithm is developed with a significant reduction of complexity from the existing Viterbi-based algorithm. The R-D points of frames are sorted under the hierarchical dependency constraints and optimal JSCC solution is obtained in terms of the best R-D performance. Experimental results show that our scheme outperforms the existing scheme of [13] with average quality gains of 0.26 dB and 0.22 dB for progressive and non-progressive modes respectively.

Multiple Region-of-Interest Support in Scalable Video Coding

  • Bae, Tae-Meon;Thang, Truong Cong;Kim, Duck-Yeon;Ro, Yong-Man;Kang, Jung-Won;Kim, Jae-Gon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.239-242
    • /
    • 2006
  • In this letter, we propose a new functionality to scalable video coding (SVC), that is, the support of multiple region of interests (ROIs) for heterogeneous display resolution. The main objective of SVC is to provide temporal, spatial, and quality scalability of an encoded bitstream. The ROI is an area that is semantically important to a particular user, especially users with heterogeneous display resolutions. Less transmission bandwidth is needed compared to when the entire region is transmitted/decoded and then sub-sampled or cropped. To support multiple ROIs in SVC, we adopt flexible macroblock ordering (FMO), a tool defined in H.264, and based on it, we propose a way to encode and, independently, decode ROIs. The proposed method is implemented on the joint scalable video model (JSVM) and its functionality verified.

  • PDF

Scalable Interframe Wavelet Coding with Low Complex Spatial Wavelet Transform

  • Kim, Won-Ha;Jeong, Se-Yoon;Kim, Kyu-Heon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.145-154
    • /
    • 2006
  • In the decoding process associated with interframe wavelet coding, the inverse wavelet transform requires high computational complexity. However, as video technology starts to pervade all aspects of our lives, decoders are becoming required in various devices such as PDAs, notebooks, PCs, and set-top boxes. Therefore, a decoder's complexity needs to be adapted to the processor's computational power, and consequently a low-complexity codec is also required for scalable video coding. In this paper, we propose a method of controlling and lowering the complexity of the spatial wavelet transform while sustaining the same coding efficiency as that currently afforded. In addition, the proposed method may alleviate the ringing effect for slowly changing image sequences.

  • PDF

Scalable Video Coding Using Large Block and its Performance Analysis (Large Block을 적용한 SVC 부호화 및 성능분석)

  • Park, Un-Ki;Choi, Haechul;Kang, Jung Won;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.249-260
    • /
    • 2013
  • Recently, High-Efficiency Video Coding (HEVC) has been developed as a new video coding standard mainly focusing on the coding of ultra high definition (UHD) videos as the high resolution and high quality videos are getting more popular. Furthermore, the scalable extension of HEVC is being standardized for more efficient provision of HD and UHD services in the communications-broadcasting convergence environment. In this paper, we propose an improved scalable video coding method of H.264/AVC to achieve high coding efficiency particularly for UHD and HD videos. The basic idea is to allow large block size in H.264/AVC SVC, which results in more efficient inter-layer prediction and syntax elements coding. The experimental results show that it achieves an average 4.53% reduction in BD-rate relative to H.264/AVC SVC.

Efficient Motion Prediction Architecture and Design of DPB for Scalable Multi-view Video Coding (스케일러블 다시점 비디오 부호화를 위한 효율적인 움직임 예측구조와 DPB 설계)

  • Kim, Ji-Hoon;Jung, Tae-Jun;Lee, Hong-Rae;Seo, Kwang-Deok;Kim, Jin-Soo;Lee, Hahyun;Kang, Jung Won
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.976-989
    • /
    • 2012
  • In this paper, we propose an efficient motion prediction architecture and DPB design mechanism for scalable multi-view video coding which is implemented by integrating SVC and MVC coding algorithms. In the proposed motion prediction architecture, we employ pictures associated with other views as a candidate for reference picture for improved motion prediction performance. By the proposed prediction architecture, we could enormously reduce the size of compressed video data. When performing scalable multi-view video coding, an integrated DPB design mechanism is also proposed. It is shown by various simulations that the proposed motion prediction architecture for scalable multi-view video coding can result in reduced data size in the compressed bitstream.

Key Management Scheme for Conditional Access Control in Scalable Video Coding (Scalable Video Coding 에서의 조건적 접근제어를 위한 키 관리 기법)

  • Won Yong-Geun;Bae Tae-Meon;Ro Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.929-932
    • /
    • 2006
  • 본 논문에서는 암호화된 Scalable Video Coding (SVC) 비트스트림에서의 조건적 접근제어을 위한 키 관리 기법을 제안한다. 스케일러블 비디오 코딩 기술은 한번 인코딩 후 비트스트림 추출을 통해 다양한 확장성(scalabbility)을 가지는 비디오를 생성 할 수 있는 기술로 확장하는 단위마다 다른 키로 암호화 하여 조건적 접근제어를 구성 할 수 있다. 그러나 기존의 조건적 접근제어 기술은 암호화 시 복수의 키가 필요하며 이는 키의 관리와 분배에 어려움을 준다. 이러한 문제를 해결하기 위해 본 논문에서는 기존의 스케일러블 코딩기법에서 조건적 접근제어를 위한 키 관리기법을 살펴보고 SVC 의 확장 구조에 맞는 키 관리 기법을 제안한다. 제안한 방법은 SVC 를 이용한 스트리밍 테스트베드에서 구현되어, 조건적 접근제어를 위한 키 관리기능의 유용성을 확인하였다.

  • PDF