• 제목/요약/키워드: scaffolding protein

검색결과 23건 처리시간 0.024초

Trends in Hybrid Cultured Meat Manufacturing Technology to Improve Sensory Characteristics

  • AMM Nurul Alam;Chan-Jin Kim;So-Hee Kim;Swati Kumari;Seung-Yun Lee;Young-Hwa Hwang;Seon-Tea Joo
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.39-50
    • /
    • 2024
  • The projected growth of global meat production over the next decade is attributed to rising income levels and population expansion. One potentially more pragmatic approach to mitigating the adverse externalities associated with meat production involves implementing alterations to the production process, such as transitioning to cultured meat, hybrid cultured meat, and meat alternatives. Cultured meat (CM) is derived from animal stem cells and undergoes a growth and division process that closely resembles the natural in vivo cellular development. CM is emerging as a widely embraced substitute for traditional protein sources, with the potential to alleviate the future strain on animalderived meat production. To date, the primary emphasis of cultured meat research and production has predominantly been around the ecological advantages and ethical considerations pertaining to animal welfare. However, there exists substantial study potential in exploring consumer preferences with respect to the texture, color, cuts, and sustainable methodologies associated with cultured meat. The potential augmentation of cultured meat's acceptance could be facilitated through the advancement of a wider range of cuts to mimic real muscle fibers. This review examines the prospective commercial trends of hybrid cultured meat. Subsequently, the present state of research pertaining to the advancement of scaffolding, coloration, and muscle fiber development in hybrid cultured meat, encompassing plant-based alternatives designed to emulate authentic meat, has been deliberated. However, this discussion highlights the obstacles that have arisen in current procedures and proposes future research directions for the development of sustainable cultured meat and meat alternatives, such as plant-based meat production.

Planar cell polarity 조절단백질 Wdpcp와 multi-PDZ domain protein 1 (MUPP1)의 PDZ 결합 (Wdpcp, a Protein that Regulates Planar Cell Polarity, Interacts with Multi‐PDZ Domain Protein 1 (MUPP1) through a PDZ Interaction)

  • 장원희;정영주;최선희;예성수;이원희;김무성;김상진;엄상화;문일수;석대현
    • 생명과학회지
    • /
    • 제26권3호
    • /
    • pp.282-288
    • /
    • 2016
  • 단백질-단백질 결합은 수용체 단백질, 효소, 세포 골격 단백질의 세포내 위치 결정 및 기능 조절에 중요한 역할을 한다. Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) 도메인을 가진 단백질들은 시냅스 가소성, 신경세포 성장과 분화뿐만 아니라 많은 질병의 병태생리에 중요하게 관여하는 scaffold 단백질로 작용한다. Multi-PDZ domain protein 1 (MUPP1)은 13개 PDZ 도메인을 가지는 단백질로서 세포막 수용체 군집화, 신호전달 복합체 구성, 세포 골격 조정에 대한 매개 역할을 하는 것으로 알려지고 있지만 MUPP1의 세포 내 기능은 아직 명확히 밝혀지지 않았다. 본 연구에서 MUPP1의 아미노 말단 PDZ 도메인과 결합하는 새로운 단백질을 규명하기 위하여 효모 two-hybrid 방법을 이용하였고 Wdpcp (전에 Fritz로 알려짐)이 MUPP1과 결합하는 것을 확인하였다. Wdpcp는 planar cell polarity (PCP) effector로서 세포 이동과 섬모형성에 관여하는 것으로 알려져 있다. Wdpcp는 MUPP1의 첫 번째 PDZ 도메인과 결합하지만, 다른 PDZ 도메인과는 결합하지 않았다. 또한 MUPP1와 Wdpcp의 결합에서 Wdpcp의 C-말단부위가 결합에 필수적임을 효모 two-hybrid 방법으로 확인하였다. 이러한 단백질간 결합은 glutathione S-transferase (GST) pull-down assay, 공동면역침강, HEK-293T 세포에서의 발현위치를 통하여 추가적으로 확인하였다. 이러한 결과들은, MUPP1과 Wdpcp 결합은 세포내 액틴 다이내믹스(dynamics)와 세포이동 조절에 역할을 할 가능성을 시사한다.

Identification of WDR7 as a Novel Downstream Target of the EphA8-Odin Signaling Complex

  • Park, Eun-Jeong;Park, Soo-Chul
    • Animal cells and systems
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2009
  • Eph receptors and their ephrin ligands have been implicated in a variety of cellular processes such as cellular morphogenesis and motility. Our previous studies demonstrated that Odin, one of the Anks family proteins, functions as a scaffolding protein of the EphA8 signaling pathway leading to modulation of cell migration or axonal outgrowth. Here we show that WDR7 is associated with Odin and that it is possibly implicated in the EphA8 signaling pathway. WD40 repeats present in the COOH-terminal region of WDR7 appear to be crucial for its association with Odin, whereas the binding motif of Odin is located in between ankyrin repeats and PTB domain. Co-immunoprecipitation experiments revealed that association of WDR7 with Odin is enhanced by ephrin ligand treatment, possibly through forming large protein complexes including both EphA8 and ephrin-A5. Consistently, immunofluorescence staining experiments suggested that WDR7 constitute a component of the large protein complexes containing Odin, EphA8 and ephrin-A5. Taken together, our results suggest the WDR7-Odin complexes might be involved in the signaling pathway downstream of the EphA8 receptor.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman;Wahyono, Artanto;Aryandono, Teguh;Haryono, Samuel J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.6803-6812
    • /
    • 2015
  • Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Bacterial Overexpression and Denaturing Purification of VPS34-Binding Domain of Beclin 1

  • Baek, Jong-Hyuk;Jung, Juneyoung;Seo, Jeongbin;Kim, Jeong Hee;Kim, Joungmok
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권10호
    • /
    • pp.1808-1816
    • /
    • 2016
  • As a scaffolding subunit of the PIK3C3/VPS34 complex, Beclin 1 recruits a variety of proteins to class III phosphatidylinositol-3-kinase (VPS34), resulting in the formation of a distinct PIK3C3/VPS34 complex with a specific function. Therefore, the investigation of a number of Beclin 1 domains required for the protein-protein interactions will provide important clues to understand the PIK3C3/VPS34 complex, of which Beclin1-VPS34 interaction is the core unit. In the present study, we have designed a bacterial overexpression system for the Beclin 1 domain corresponding to VPS34 binding (Vps34-BD) and set up the denaturing purification protocol due to the massive aggregation of Vps34-BD in Escherichia coli. The expression and purification conditions determined in this study successfully provided soluble and functional Vps34-BD.

nArgBP2 as a hub molecule in the etiology of various neuropsychiatric disorders

  • Lee, Sang-Eun;Chang, Sunghoe
    • BMB Reports
    • /
    • 제49권9호
    • /
    • pp.457-458
    • /
    • 2016
  • Recent studies have strongly implicated postsynaptic scaffolding proteins such as SAPAP3 or Shank3 in the pathogenesis of various mood disorders, including autism spectrum disorder, bipolar disorder (BD), and obsessive-compulsive disorders. Neural Abelson-related gene-binding protein 2 (nArgBP2) was originally identified as a protein that interacts with SAPAP3 and Shank3. Recent study shows that the genetic deletion of nArgBP2 in mice leads to manic/bipolar-like behavior resembling symptoms of BD. However, the function of nArgBP2 at synapse, or its connection with the synaptic dysfunctions, is completely unknown. This study provides compelling evidence that nArgBP2 regulates the spine morphogenesis through the activation of Rac1/WAVE/PAK/cofilin pathway, and that its ablation causes a robust and selective inhibition of excitatory synapse formation, by controlling actin dynamics. Our results revealed the underlying mechanism for the synaptic dysfunction caused by nArgBP2 downregulation that associates with analogous human BD. Moreover, since nArgBP2 interacts with key proteins involved in various neuropsychiatric disorders, our finding implies that nArgBP2 could function as a hub linking various etiological factors of different mood disorders.

Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts

  • Ahn, Jun-Ho;Eum, Ki-Hwan;Lee, Michael
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.205-211
    • /
    • 2010
  • Sprouty (Spry) proteins have previously been suggested as negative regulators of the MAPK pathway through interaction with Raf-1. However, the molecular basis of this inhibition has not been elucidated. In this study, we used cells expressing FLAGtagged Raf-1 with point mutations at known phosphorylation sites to reveal that activation of Raf-1 mutants does not correlate with their degree of interaction with Spry2. The association of Raf-1 with Spry2 in intact cells was further corroborated by immunofluorescence colocalization. Additionally, there was no significant change observed in the strength of interaction between Raf-1 mutants and Spry2 after paclitaxel treatment despite differences in the activation levels of these mutants. Thus, our study provides the evidence that Spry2 does not directly regulate Raf-1 kinase activity, but instead acts as a scaffolding protein that assists interactions between Raf-1 kinase and its direct regulators.

암 미세환경에서 ZO 단백질의 역할 고찰 (Examining the Role of ZO Protein in the Cancer Microenvironment)

  • 김민혜;차희재
    • 생명과학회지
    • /
    • 제34권4호
    • /
    • pp.279-285
    • /
    • 2024
  • Zonula occludens (ZO) 단백질은 세포 간의 접합 및 세포질 표면에서 구조적으로 기초를 제공하는 스캐폴딩 단백질로 통합 막 단백질과 세포골격 사이를 연결해주는 역할을 하며 구조적 기능 이외에도 세포 성장 및 증식 조절에도 참여를 한다. 최근 연구들에 따르면 ZO 단백질이 여러 질병 중에서도 암에 관여를 한다는 사실을 보여주고 있다. 특히, ZO 단백질은 암 미세환경에서 암세포의 성장과 발달에 영향을 주고 있다고 보고되고 있다. ZO 단백질은 혈관신생, 염증 반응, 상피-중간엽 전이, 중간엽 줄기 세포와의 상호작용을 통해 암 미세환경에서 다양한 기능을 수행한다. 이런 작용 메커니즘은 암의 종류 및 환경적 조건에 따라 달라질 수 있어 최근까지도 이와 관련된 연구들이 진행되면서 ZO 단백질이 참여하는 여러 신호전달기작들이 밝혀지고 있다. 이를 통해 암세포 환경에서 암 성장과 발달을 늦춰줄 수 있는 새로운 치료법도 고려해 볼 수 있다. 또한 ZO 단백질의 세포 및 생체 내 역할에 대한 연구는 계속되고 있지만, 신호전달 기작들이 생체 내 암 미세환경에서 어떻게 작용하는지에 대한 이해는 아직 부족하다. 따라서, 본 리뷰에서는 ZO 단백질 관련 암 미세환경의 특징 및 조절 기작을 소개하고 ZO 단백질의 특성을 활용하여 암 세포 환경을 억제하고 생체 내 ZO 단백질의 역할을 고찰하고자 한다.

Dishevelling Wnt and Hippo

  • Kim, Nam Hee;Lee, Yoonmi;Yook, Jong In
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.425-426
    • /
    • 2018
  • As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to ${\beta}-catenin$ in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, ${\alpha}-catenin$, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.