• Title/Summary/Keyword: saturation zone

Search Result 108, Processing Time 0.034 seconds

Development of Fire Detection Algorithm using Intelligent context-aware sensor (상황인지 센서를 활용한 지능형 화재감지 알고리즘 설계 및 구현)

  • Kim, Hyeng-jun;Shin, Gyu-young;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.93-96
    • /
    • 2015
  • In this paper, we introduce a fire detection system using context-aware sensor. In existing weather and based on vision sensor of fire detection system case, acquired image through sensor of camera is extracting features about fire range as processing to convert HSI(Hue, Saturation, Intensity) model HSI which is color space can have durability in illumination changes. However, in this case, until a fire occurs wide range of sensing a fire in a single camera sensor, it is difficult to detect the occurrence of a fire. Additionally, the fire detection in complex situations as well as difficult to separate continuous boundary is set for the required area is difficult. In this paper, we propose an algorithm for real-time by using a temperature sensor, humidity, Co2, the flame presence information acquired and comparing the data based on multiple conditions, analyze and determine the weighting according to fire it. In addition, it is possible to differential management to intensive fire detection is required zone dividing the state of fire.

  • PDF

Seismic AVO Analysis, AVO Modeling, AVO Inversion for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조파악을 위한 탄성파 AVO 분석 AVO모델링, AVO역산)

  • Kim Gun-Duk;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.643-646
    • /
    • 2005
  • The gas hydrate exploration using seismic reflection data, the detection of BSR(Bottom Simulating Reflector) on the seismic section is the most important work flow because the BSR have been interpreted as being formed at the base of a gas hydrate zone. Usually, BSR has some dominant qualitative characteristics on seismic section i.e. Wavelet phase reversal compare to sea bottom signal, Parallel layer with sea bottom, Strong amplitude, Masking phenomenon above the BSR, Cross bedding with other geological layer. Even though a BSR can be selected on seismic section with these guidance, it is not enough to conform as being true BSR. Some other available methods for verifying the BSR with reliable analysis quantitatively i.e. Interval velocity analysis, AVO(Amplitude Variation with Offset)analysis etc. Usually, AVO analysis can be divided by three main parts. The first part is AVO analysis, the second is AVO modeling and the last is AVO inversion. AVO analysis is unique method for detecting the free gas zone on seismic section directly. Therefore it can be a kind of useful analysis method for discriminating true BSR, which might arise from an Possion ratio contrast between high velocity layer, partially hydrated sediment and low velocity layer, water saturated gas sediment. During the AVO interpretation, as the AVO response can be changed depend upon the water saturation ratio, it is confused to discriminate the AVO response of gas layer from dry layer. In that case, the AVO modeling is necessary to generate synthetic seismogram comparing with real data. It can be available to make conclusions from correspondence or lack of correspondence between the two seismograms. AVO inversion process is the method for driving a geological model by iterative operation that the result ing synthetic seismogram matches to real data seismogram wi thin some tolerance level. AVO inversion is a topic of current research and for now there is no general consensus on how the process should be done or even whether is valid for standard seismic data. Unfortunately, there are no well log data acquired from gas hydrate exploration area in Korea. Instead of that data, well log data and seismic data acquired from gas sand area located nearby the gas hydrate exploration area is used to AVO analysis, As the results of AVO modeling, type III AVO anomaly confirmed on the gas sand layer. The Castagna's equation constant value for estimating the S-wave velocity are evaluated as A=0.86190, B=-3845.14431 respectively and water saturation ratio is $50\%$. To calculate the reflection coefficient of synthetic seismogram, the Zoeppritz equation is used. For AVO inversion process, the dataset provided by Hampson-Rushell CO. is used.

  • PDF

Geochemical Characteristics of Groundwater for Dry and Rainy Seasons in Ddan-sum Island (갈수기와 홍수기의 김해 딴섬지역 지하수의 지구화학 특성)

  • Kim, Gyoobum;Jeon, Hangtak;Shin, Seonho;Park, Joonhyeong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.31-44
    • /
    • 2012
  • Seasonal changes in groundwater geochemistry exist in Ddan-sum island. In the farming season of April, the spatial distribution of ions explains that $Fe^{2+}$, Fe(total), $Mn^{2+}$, $Ca^{2+}$, $Mg^{2+}$, $SiO_2$, ${HCO_3}^-$, and ${NO_3}^-$ are high in the center of the island, but $Na^+$ and $K^+$ are relatively low and these high anions indicates the effect of fertilizer used for strawberry cultivation. Spatial variation of ion concentration is smaller in August than April because of low agricultural activity and heavy rainfall. Geochemical type of groundwater shows that the center of island has the characteristics of recharge zone but the rim area corresponds to a mixing zone between groundwater and stream water. According to the analysis of saturation index for Fe and Mn ions, hematite, goethite, and rhodochrosite under supersaturation have a possibility of additional mineral deposition, and siderite, $Fe(OH)_3$, manganite, pyrolusite, and pyrochroite under unsaturation may exist as a type of dissolved ion.

Modified Approaches to Delay Estimation for the Work Zones in the Proximity of the Signalized Intersections (공사구간이 있는 신호교차로의 지체산정을 위한 새로운 접근)

  • Shin, Chi-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.269-281
    • /
    • 2018
  • Unlike its archetype predecessor such as the Highway Capacity Manual of the United States, the Korean Highway Capacity Manual of 2013 provides the analytical models for estimating the saturation flow rates for the lane-occupying work-zones in the proximity of the signalized intersections. Direct application of the revised saturation flow rates into the classic control delay models, however, appears to produce unreasonable delay amount as traffic demand approaches lane-group capacities and surpasses them, which is common phenomena in the work-zones. Complex interaction among vehicles, lane-dropping work-zone geometry and signal operations were never accounted in the traditional control delay models, and considerable differences between the delay model outcomes and field observations are repeatedly experienced. This paper proposes the modified approaches to the delay models in the manual, exerted on all three elements of control delay, and particularly focuses on the temporal and spatial boundary expansion in comparing the simulated results to the estimated ones. Extensive microscopic simulation work and calibration effort supports the modified approaches well enough to use them in the work-zone planning and evaluation.

Effect of Cyclic Injection on Migration and Trapping of Immiscible Fluids in Porous Media (공극 구조 내 교차 주입이 비혼성 유체의 포획 및 거동에 미치는 영향)

  • Ahn, Hyejin;Kim, Seon-ok;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.37-48
    • /
    • 2019
  • In geological $CO_2$ sequestration, the behavior of $CO_2$ within a reservoir can be characterized as two-phase flow in a porous media. For two phase flow, these processes include drainage, when a wetting fluid is displaced by a non-wetting fluid and imbibition, when a non-wetting fluid is displaced by a wetting fluid. In $CO_2$ sequestration, an understanding of drainage and imbibition processes and the resulting NW phase residual trapping are of critical importance to evaluate the impacts and efficiencies of these displacement process. This study aimed to observe migration and residual trapping of immiscible fluids in porous media via cyclic injection of drainage-imbibition. For this purpose, cyclic injection experiments by applying n-hexane and deionized water used as proxy fluid of $scCO_2$ and pore water were conducted in the two dimensional micromodel. The images from experiment were used to estimate the saturation and observed distribution of n-hexane and deionized water over the course drainage-imbibition cycles. Experimental results showed that n-hexane and deionized water are trapped by wettability, capillarity, dead end zone, entrapment and bypassing during $1^{st}$ drainage-imbibition cycle. Also, as cyclic injection proceeds, the flow path is simplified around the main flow path in the micromodel, and the saturation of injection fluid converges to remain constant. Experimental observation results can be used to predict the migration and distribution of $CO_2$ and pore water by reservoir environmental conditions and drainage-imbibition cycles.

The Study on the Crystal Growing of Mn-Zn Ferrite Single Crystals by Floating Zone Method (Floating Zone법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1992
  • Mn - Zn Ferrite has physical properties of the high initial permeability, saturation magnetic flux density, and low loss factor as a representative magnetic material of soft ferrites, in addition the mechanical property is excellent as a single crystal. Therefore it is important electronic components and used for VTR Head. Mn - Zn Ferrite single crystals with the diameter 8mm were grown in atmosphere mixed with $O_2$ and Ar gas by the Floating Zone(FZ) method that impurities can not be incorporated to the crystals because of not-using the crucible to put in the melt, and the sharp temperature gradient results from making a focus at one point utilizing the infrared ray emitted from the halogen lamp as a heat source. During the crystal growing, the highest temperature of melting area was maintained to be $1650^{\circ}C$, growth rate and rotation rate were 10 mm/hr, 20 rpm respectively. The phases and the growth directions of crystals were determined from the analysis of X RD patterns, Laue, TEM diffraction patterns and etch pit shapes were observed by the optical microscope through the chemical etching. The corelation of optimum conditions for acquiring the better crystals was found out with the growth rate, the length and diameter of melt at the interface according to the diameter of feed rod, and the patterns of growing interface also studied.

  • PDF

A Study on the Seepage Behavior of Embankment with Weak Zone using Numerical Analysis and Model Test (취약대를 가진 모형제방의 침투거동에 관한 연구)

  • Park, Mincheol;Im, Eunsang;Lee, Seokyoung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.5-13
    • /
    • 2016
  • This research is focused on the seepage behavior of embankment which had the weak zone with big permeability. The distributed TDR (Time Domain Reflectometer) and point sensors such as settlement gauge, pore water pressuremeter, vertical total stressmeter, and FDR (Frequency Domain Reflectometer) sensor were used to measure the seepage characteristics and embankment behavior. Also, the measured data were compared to the data of 2-D and 3-D numerical analysis. The dimension of model embankment was 7 m length, 5 m width and 1.5 m height, which is composed of fine-grained sands and the water level of embankment was 1.3 m height. The seepage behavior of measuring and numerical analysis were very similar, it means that the proper sensing system can monitor the real-time safety of embankment. The result by 2-D and 3-D numerical analysis showed similar saturation processing, however in case of weak zone, the phreatic lines of 2-D showed faster movement than that of 3-D analysis, and finally they converged.

Investigation of Seasonal Characteristics of Contaminants and Hydrochemical Factors in an Aquifer for Application of In Situ Reactive Zone Technology (원위치 반응존 공법 적용을 위한 대수층내 오염물질 및 환경영향인자의 계절 특성 평가)

  • Ahn, Jun-Young;Kim, Cheolyong;Kim, Tae Yoo;Jun, Seong-Chun;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.192-203
    • /
    • 2016
  • A field investigation was conducted on an aquifer contaminated with trichloroethylene (TCE) for application of in situ reactive zone treatment using nanosized zero-valent iron (NZVI). The aquifer was an unconfined aquifer with a mean hydraulic conductivity of $5.14{\times}10^{-4}cm/sec$, which would be favorable for NZVI injection. Seasonal monitoring of TCE concentration revealed a presence of non-aqueous phase liquid form of TCE near IW (injection well). The hydrochemical data characterized the site groundwater to be a $Ca-HCO_3$ type. The average value of Langelier Saturation Index of the groundwater was -1.33, which implied that the site was favorable for corrosion of NZVI. Dissolved oxygen (DO) concentration varied between 2.5~11.5 mg/L, which indicated that DO would greatly compete with TCE as an electron acceptor. The hydrogeological and hydrochemical characterization reveals that the time around November would be appropriate for NZVI injection when water level and temperature are relatively high and DO concentration is low.

A Visual Study on Nucleate Boiling Phenomena in a Closed Two-Phase Thermosyphon (밀폐형 2상 열사이폰내의 비등현상에 관한 가시화 연구)

  • 강환국;오광헌;김철주;박이동;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.185-198
    • /
    • 1995
  • This is an experimental study conducted to visualize the nucleate boiling phenomena and flow regimes occurring inside the liquid pool in a closed two-phase thermosyphon. To meet this purpose, an annular-type thermosyphon was designed and manufactured using a glass tube and a stainless steel tube, being assembled axisymmetrically. The heat to be supplied to the working fluid is generated within a very thin layer of stainless steel tube wall by applying a high frequency electromagnetic field through the induction coil, axisymmetrically set around the evaporator zone. Some important results were as follows ; 1) Considering the structural complexity of the tested thermosyphon, it showed good performance for the range of heat flux 2< q" <25kW/$m^2$ and saturation vapor pressure, 0.1<Pv<1.1bar 2) different type of nucleating boiling regimes were observed as described below, -Pulse boiling regime : Flow pattern changed cyclically with time during 1 cycle of pulse boiling process. The onset of Nucleation was followed by expulsive growing of vapor bubble, resulting in the so called blow-up phenomenon, massive expulsion of large amount of liquid around the bubble. -Transient : Some spherical vapor bobbles were observed growing out from 2~3 nucleating sites, that was dispersed at the lower part of the heated tube wall in the liquid pool. But the rest upper region above the nucleating sites were filled with churns or bubbles of vapor. -Continuous nucleate boiling regime : The whole zone of evaporator was filled with lots of spherical vapor bubbles, and the bubbles showed tendency to decrease in diameter as the heat flux increased.ased.

  • PDF

General Oceanographic Factors In Yeongil Bay Of Korea, Late October 1973 (가을철 영일만수괴의 일반해양학적 특성)

  • Kwak, Hi-Sang
    • 한국해양학회지
    • /
    • v.11 no.2
    • /
    • pp.89-95
    • /
    • 1976
  • Some factors of seawater such as water temperature, salinity, pH, dissolved oxygen and asturation of dissolved oxygen were determined in 5 meters intervals from surface to bottom at 11 stations in Yeongil Bay of Korea during late October 1973. Distribution pattern of water masses in Yeongil Bay during the period seemed to be heterogeneous as dividing into two parts of surface and bottom. Water temperature, pH, dissolved oxygen and saturation of dissolved oxygen of surface water mass showed higher values and salinity of the mass showed lower values than those factors of bottom water mass. Surface water mass might be originated from Tsushima current during summer season and bottom water mass from cold body of East Sea of Korea which seemed to extend to coastal zone during winter season. Land water discharge from Hyeongsan River into the Bay is considered as a minor factor playing slight role in the water mass composition of the area.

  • PDF