• 제목/요약/키워드: saturation remanent magnetization

검색결과 28건 처리시간 0.028초

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.214-220
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

보상 알고리즘을 적용한 모선보호용 전류차동 계전기 (A Busbar Current Differential Relay with a Compensating Algorithm)

  • 강용철;윤재성
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.214-214
    • /
    • 2004
  • This paper describes a busbar current differential relay in conjunction with a current transformer(CT) compensating algorithm irrespective of the level of the remanent flux. The compensating algorithm detects the start of first saturation if the third-difference function of the current exceeds the threshold; it estimates the core flux at the first saturation start by inserting the negative value of the third-difference function of the current into the magnetization curve; thereafter, it calculates the core flux during the fault and compensates the distorted current using the magnetization curve. The algorithm estimates the correct secondary current irrespective of the level of the remanent flux and needs no saturation point of the magnetization curve. The proposed relay can improve not only security of the relay on an external fault with CT saturation but sensitivity of the relay on an internal fault; the relay can improve the operating speed on n internal fault with CT saturation. This paper concludes by implementing the relay into a digital signal processor based prototype relay.

개선된 변류기 2차 전류 보상 알고리즘 (An Advanced Algorithm for Compensating the Secondary Current of CTs)

  • 강용철;임의재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.387-392
    • /
    • 2003
  • During a fault the remanent flux in a current transformer (CT) may cause severe saturation of its core. The resulting distortion in the secondary current could cause the mal-operation of a protection relay. This paper proposes an algorithm for compensating for the errors in the secondary current caused by CT saturation and the remanent flux. The algorithm compensates the distorted current irrespective of the level of the remanent flux. The second-difference function of the current is used to detect when the CT first starts to saturate. The negative value of the second-difference function at the start of saturation, which corresponds to the magnetizing current, is inserted into the magnetization curve to obtain the core flux at the instant. This value is then used as an initial flux to calculate the actual flux of the CT during the course of the fault with the secondary current. The magnetizing current is then estimated using the magnetization curve and the calculated flux value. The compensated secondary current can be estimated by adding the magnetizing current to the secondary current. Test results indicate that the algorithm can accurately compensate a severely distorted secondary current signal.

잔류자속에 무관한 변압기 보호용 수정전류차동 계전기 (Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux)

  • 강용철;김은숙
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권9호
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

잔류자화비를 이용한 운석의 자성광물 판별 (Magnetic Mineral Identification in Meteorites)

  • 김인호;유용재
    • 한국광물학회지
    • /
    • 제24권1호
    • /
    • pp.31-36
    • /
    • 2011
  • 운석은 모암인 소행성(asteroid)이나 미세소행성(planetesimal)에서 충돌에 의해 분리된 후, 태양계 내의 공간을 배회하다가 지구의 중력에 이끌려 지표에 떨어진 후 수집된 돌덩이다. 따라서 생성 초기의 지구를 포함하는 태양계 내 지구형 행성의 생성 초기와 진화과정을 규명하려면 원시 태양계의 정보를 간직하고 있는 운석의 물리/화학적 분석이 반드시 필요하다. 특히 열잔류자화(thermoremanent magnetization, TRM) 대비 포화등온잔류자화(saturation isothermal remanent magnetization, SIRM)의 비율과 자화를 유도하는 자기장 강도의 상관관계를 이용하면 운석이 함유하는 자성광물을 판별할 수 있다. TRM/SIRM 비를 이용하여 2종류의 미분화운석(H5 Richardton, LL6 St. Severin)과 2종류의 화성기원 분화운석(ALH84001, DaG476)에 대해 자성광물 판별을 시도하였다. 실험 결과 H5 Richardton, LL6 St. Severin, ALH84001, DaG476의 주 자성광물이 각각 카마사이트, 테트라테나이트, 자철석, 크롬티탄함유철석임을 판별하였다.

Design of a CT Saturation Detection Technique with the Countermeasure for a Spike Signal

  • Kang, Yong-Cheol;Yun, Jae-Sung
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권2호
    • /
    • pp.85-92
    • /
    • 2003
  • When a current transformer (CT) is saturated, the wave-shape of the secondary current is distorted and contains points of inflection, which correspond to the start or end of each saturation period. Discontinuity in the first-difference function of the current arises at points of inflection, where the second and third differences convert into pulses that can be used to detect saturation. This paper describes the design and evaluation of a CT saturation detection technique using the third-difference function and includes the countermeasure for a spike signal. Test results clearly demonstrate that the algorithm successfully detects the start and end of each saturation period irrespective of the remanent flux and magnetization inductance in the saturated region. This paper concludes by describing the results of hardware implementation of the algorithm using a DSP.

$Y-{\Delta}$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for $Y-{\Delta}$ Transformer Protection)

  • 김은숙;강용철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권3호
    • /
    • pp.95-101
    • /
    • 2006
  • This paper proposes a modified current differential relay for $Y-{\Delta}$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation, because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay does not require additional restraining signal and thus cause time delay of the relay.

Y-$\Delta$ 변압기 보호용 수정 전류차동 계전기 (Modified Current Differential Relay for Y-$\Delta$ Transformer Protection)

  • 강용철;김은숙;이병은
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.9-13
    • /
    • 2004
  • This paper proposes a modified current differential relay for Y-$\Delta$ transformer protection. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. A method to estimate the circulating component of the delta winding current is proposed. To cope with the remanent flux, before saturation, the core-loss current is calculated and used to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Test results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. The relay correctly discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

  • PDF

A New Spinel in Martian Meteorite SaU 008: Implications for Martian Magnetism

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 특별 심포지엄 논문집
    • /
    • pp.27-30
    • /
    • 2007
  • Martian meteorites are the only available Martian Materials on Earth. A suite of demagnetization experiments, temperature dependence of saturation magnetization, scanning electron microscopy, and electron microprobe analysis were carried out to characterize the remanent magnetization carriers of Martian meteorite SaU 008. A stable paleomagnetic record of SaU 008 originates from a newly found spinel ((Fe, Cr, Ti)-spinel) whose composition has never been documented (or identified as magnetic).

  • PDF

잔류자속을 고려한 변압기 보호용 수정 전류차동 계전방식 (A Modified Current Differential Relaying Algorithm for Transformer Protection Considered by a Remanent Flux)

  • 강용철;김은숙;원성호;임의재;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.262-265
    • /
    • 2003
  • During magnetic inrush or over-excitation saturation of the core in a transformer draws a large exciting current. This can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. In order to cope with the remanent flux at the beginning. the start of saturation of the core is detected and the core flux at the instant is estimated by inserting the differential current into a magnetization curve. Then, this core flux value can be used to calculate the core flux. The proposed relay calculates the core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss current and the magnetizing current from the conventional differential current. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

  • PDF