• Title/Summary/Keyword: satellites

Search Result 1,628, Processing Time 0.027 seconds

Improving Estimation Accuracy of Satellite Clock Error for GPS Satellite Clock Anomaly Detection (GPS 위성 시계 이상 검출을 위한 위성 시계 오차 추정 정확도 향상)

  • Heo, Youn-Jeong;Cho, Jeong-Ho;Heo, Moon-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.225-231
    • /
    • 2011
  • The satellite clock anomalies, one of the abnormal signal factors of the GPS satellites, can have a significant impact on the GPS measurements. However, it can be difficult to detect the anomalies of the satellites clock before the range of the satellites clock error becomes bigger than the range of the other factors, due to the measurement including error of the orbit, ionosphere delay, troposphere delay, multipath and receiver clock. In order to perform quick and accurate detection by minimization of critical range in anomalies of the satellites clock, this paper suggested a solution to detect precise anomalies of the satellites clock after application of carrier smoothing filter from measurement by dual-frequency and adjustment of errors which can be occurred by other factor and the receiver clock errors. The performance of the proposed method was confirmed by comparing to the satellite clock biases which are provided by IGS.

Generalization modeling and verify for low-orbit satellite regulation converter (저궤도 위성의 정 전압 변압기 일반화 모델링 및 적용)

  • Yun, Seok-Teak
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellites is very important to survival operation and hard to test, increasing reliability is very critical. Especially LEO small satellites are very sensitive to power system, effective stabilization control is important. Because of various need of load condition, converter design are complicated. Therefore this paper introduced general modeling of LEO small satellite converter system and analyzed stabilization control design. The performance prediction of LEO small satellites power system is typically critical. Because of verity controller and rectification value, it is hard to computation and test implementation. So, this approach has merit that will reduce cost and make more reliable system. Furthermore, it can be constraint of converter specification and controller design. This paper will examine generation a modeling of LEO small satellites power converting system, and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite.

Development of Rainfall Estimation Technology in the Korean Peninsula in the Event of Heavy Rain using COMS and GPM Satellites (천리안 위성과 GPM 위성을 활용한 한반도 호우사상 강우추정 기술 개발)

  • Cheon, Eun Ji;Lee, Dalgeun;Yu, Jung Hum
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.851-859
    • /
    • 2019
  • The COMS satellites take image of the Korean Peninsula every 15 minutes, but due to the limitations of the observational channels, they tend to underestimate when estimating rainfall. In this study, we developed satellite-based rainfall estimation technology using COMS and GPM that can be used in the heavy rain on the Korean Peninsula. The time resolution and spatial resolution of COMS satellites and GPM satellites were matched to improve accuracy using GPM IMERG data. As a result, it showed that the number of correlations with the ASOS observations was more than 0.7, enabling the estimation of rainfalls that are more accurate than the estimates of rainfall by COMS satellites. It is believed that the application of the subsequent satellite(GK-2A) will provide more accurate rainfall estimation information in the future. Therefore, we expect greater utilization in disaster management for the ungauged areas.

Analysis of orbit control for allocation of small SAR satellite constellation (초소형 SAR 위성군의 배치를 위한 궤도 제어 분석)

  • Song, Youngbum;Son, Jihae;Park, Jin-Han;Song, Sung-Chan;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.8-16
    • /
    • 2022
  • This paper presents the orbital control for positioning micro synthetic aperture radar (SAR) satellites for all-weather monitoring around the Korean Peninsula. In Small SAR technology experimental project (S-STEP) developed in Korea, multiple satellites are placed at equal intervals in multiple orbital planes to secure an average revisit period for the region around the Korean Peninsula. Satellites entering the same orbital plane use ion thrusters to control their orbits and the separation velocity from the launch vehicle to distribute them evenly across the orbit. For an orbital that places the satellites equally spaced in the same orbital plane, the shape of the satellite constellation is formed by adjusting the difference in drift rates between the satellites. This paper presents, different types of satellite constellations, and the results of satellite constellation placement according to launch strategies are presented. In addition, a method and limitations in shortening the duration of orbital deployment are presented.

ITU-R Study on Frequency Sharing for Mobile Satellite Services (ITU-R의 이동위성업무 주파수 공유 연구 현황)

  • B.J. Ku;D.S. Oh
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.55-64
    • /
    • 2023
  • Recently, preparations for 6G have led to the increasing interest in integrated or hybrid communication networks considering low-orbit satellite communication networks with terrestrial mobile communication networks. In addition, the demand for frequency allocation for new mobile services from low-orbit small satellites to provide global internet of things (IoT) services is increasing. The operation of such satellites and terrestrial mobile communication networks may inevitably cause interference in adjacent bands and the same band frequency between satellites and terrestrial systems. Focusing on the results of the recent ITU-R WP4C meeting, this study introduces the current status of frequency sharing and interference issues between satellites and terrestrial systems, and frequency allocation issues for new mobile satellite operations. Coexistence and compatibility studies with terrestrial IMT in L band and 2.6 GHz band, operated by Inmassat and India, respectively, and a new frequency allocation study (WRC-23 AI 1.18) are carried out to reflect satellite IoT demand. For the L band, technical requirements have been developed for emission from IMT devices at 1,492 MHz to 1,518 MHz to bands above 1,518 MHz. Related studies in the 2 GHz and 2.6 GHz bands are not discussed due to lack of contributions at the recent meeting. In particular, concerning the WRC-23 agenda 1.18 study on the new frequency allocation method of narrowband mobile satellite work in the Region 1 candidate band 2,010 MHz to 2,025 MHz, Region 2 candidate bands 1,695 MHz to 1,710 MHz, 3,300 MHz to 3,315 MHz, and 3,385 MHz to 3,400 MHz, ITU-R results show no new frequency allocation to narrow mobile satellite services. Given the expected various collaborations between satellites and the terrestrial component are in the future, interference issues between terrestrial IMT and mobile satellite services are similarly expected to continuously increase. Therefore, participation in related studies at ITU-R WP4C and active response to protect terrestrial IMT are necessary to protect domestic radio resources and secure additional frequencies reflecting satellite service use plans.

Characteristics of Multi-GNSS Involving Chinese Global Navigation Satellite System, Beidou-Compass

  • Ko, Kwang-Soob;Choi, Chang-Mook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.872-875
    • /
    • 2012
  • Recently, China officially declared to operate its satellite positioning system, Beidou so called Compass. The system is currently having 10 orbiting satellites which regionally cover from Australia to Russia in the north. Moreover, the system will be planed not only to launch 6 navigation satellites in its orbit in 2012 but also to complete the system with 35 satellites in 2020. The China satellite navigation system can affect to the current circumstance of global satellite navigation world in terms of navigation parameters. In this paper, we investigate characteristics of multi-integrated GNSS involving Beidu-Compass system and discuss general issues involving visibility and GDOP.

  • PDF

Attitude Control of Artificial Satellites via Intelligent Digital Redesign

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Yeun-Woo;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1283-1288
    • /
    • 2003
  • This paper proposes an approach to attitude control artificial satellites with jet-engine. The jet-engine produces on-off thrust, which can be modelled as pulse-width-modulated (PWM) function. Therefore, the problem is converted to design a PWM controller and we develop an efficient technique for this purpose using digital redesign. The digital redesign is a converting technique a well-designed analog controller into the equivalent digital one maintaining the property of the original analog control system in the sense of state-matching. The redesigned digital controller is again converted into PWM controller using the equivalent area principle. We show a computer simulation of the attitude control of artificial satellites.

  • PDF

Development of the Power Simulation Tool for Energy Balance Analysis of Nanosatellites

  • Kim, Eun-Jung;Sim, Eun-Sup;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.225-235
    • /
    • 2017
  • The energy balance in a satellite needs to be designed properly for the satellite to safely operate and carry out successive missions on an orbit. In this study, an analysis program was developed using the MATLAB(R) graphic user interface (GUI) for nanosatellites. This program was used in a simulation to confirm the generated power, consumed power, and battery power in the satellites on the orbit, and its performance was verified with applying different satellite operational modes and units. For data transmission, STK(R)-MATLAB(R) connectivity was used to send the generated power from STK(R) to MATLAB(R) automatically. Moreover, this program is general-purpose; therefore, it can be applied to nanosatellites that have missions or shapes that are different from those of the satellites in this study. This power simulation tool could be used not only to calculate the suitable power budget when developing the power systems, but also to analyze the remaining energy balance in the satellites.

The Formation of Small Satellites near the Saturnian A-Ring

  • Kim, Yoo-Jea;Hyun, Jong-June
    • Publications of The Korean Astronomical Society
    • /
    • v.1 no.1
    • /
    • pp.21-37
    • /
    • 1984
  • The origin of five small satellites (1980 S1, 1980 S3, 1980 S26, 1980 S27 and 1980 S28) and F-ring of Saturn which were recently discovered inside the orbit of Mimas, is proposed in terms of the resonant effects by external satellites in the Saturnian primordial extended ring. From the calculations of resonance locations and strengths, the following conclusion could be derived. Assuming that present two objects 1980 S1 and 1980 S3 were originally a single object 1980 S1+S3, 1980 S1+S3 had been formed due to Enceladus' 2/1 resonance and 1980 S26 due to Mimas' 3/2 resonance at first and then 1980 S28. 1980 S27 and F-ring were formed in the next due to 1980 S1+S3's 8/7, 9/8 and 10/9 resonances, respectively.

  • PDF

Thermal Shroud Design of a Large Space Simulator(${\Phi}8m{\times}L10m$) (대형우주모사장비(${\Phi}8m{\times}L10m$) 열교환 슈라우드 설계)

  • Cho, Hyok-Jin;Moon, Guee-Won;Lee, Sang-Hoon;Seo, Hee-Jun;Winter, Calvin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1236-1240
    • /
    • 2004
  • Thermal vacuum test for satellites should be performed before launch to verify the feasibility of satellites' operation in a harsh space environment which is represented as an extremely cold temperature and vacuum condition. A large space simulator(${\Phi}8m{\times}L10m$) has been demanded to accomplish the thermal vacuum test for the huge satellites designed in compliance with the national space program of Korea. In this paper, the design and calculation of thermal shroud which is the core part of large space simulator were discussed. The characteristics of the large space simulator being constructed at Korea Aerospace Research Institute(KARI) were depicted.

  • PDF