• Title/Summary/Keyword: satellites

Search Result 1,620, Processing Time 0.034 seconds

Design of a Metamaterial-Based Low-Profile Antenna Mounted on LEO/Cube Satellites (저궤도 큐브위성 탑재용의 메타물질형 저자세 안테나의 설계)

  • Han, Dajung;Lee, Changhyeong;Park, Heejun;Lee, Jihye;Kahng, Sungtek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2017
  • In this paper, we suggest a design method of a metamaterial-based low-profile antenna working at 425 MHz for LEO/Cube satellites. Satellites play an important role in linking th remote nodes in a wireless communication network and covering wide areas of the globe. Especially, an increasing number of universities or individuals aspire having their own satellites and build low-budget structures such as cube satellites in LEO and the ways to reduce the sizes of their satellites. Since the antenna occupies a major portion of the satellite surface, the antenna should be miniaturized for lighter weight. The proposed metamaterial low-profile antenna, unlike the conventional patch antenna, produces such a zeroth-order resonance to create an omnidirectional radiation pattern. Also, it is connected to a UHF waveguide bandpass filter as the feeding system to examine the possible change in the situation that the antenna is combined with the system. The performances of the monopole and proposed metamaterial antennas are compared to one another.

Satellite Mobility Pattern Scheme for Centrical and Seamless Handover Management in LEO Satellite Networks

  • Tuysuz, Aysegul;Alagoz, Fatih
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.451-460
    • /
    • 2006
  • Since low earth orbit (LEO) satellite constellations have important advantages over geosynchronous earth orbit (GEO) systems such as low propagation delay, low power requirements, and more efficient spectrum allocation due to frequency reuse between satellites and spotbeams, they are considered to be used to complement the existing terrestrial fixed and wireless networks in the evolving global mobile network. However, one of the major problems with LEO satellites is their higher speed relative to the terrestrial mobile terminals, which move at lower speeds but at more random directions. Therefore, handover management in LEO satellite networks becomes a very challenging task for supporting global mobile communication. Efficient and accurate methods are needed for LEO satellite handovers between the moving footprints. In this paper, we propose a new seamless handover management scheme for LEO satellites (SeaHO-LEO), which utilizes the handover management schemes aiming at decreasing latency, data loss, and handover blocking probability. We also present another interesting handover management model called satellite mobility pattern based handover management in LEO satellites (PatHO-LEO) which takes mobility pattern of both satellites and mobile terminals into account to minimize the handover messaging traffic. This is achieved by the newly introduced billboard manager which is used for location updates of mobile users and satellites. The billboard manager makes the proposed handover model much more flexible and easier than the current solutions, since it is a central server and supports the management of the whole system. To show the performance of the proposed algorithms, we run an extensive set of simulations both for the proposed algorithms and well known handover management methods as a baseline model. The simulation results show that the proposed algorithms are very promising for seamless handover in LEO satellites.

Development and Analysis of Low Cost Telecommand Processing System for Domestic Development Satellites (국내 개발 인공위성을 위한 저비용 원격명령 처리 시스템 구현 및 분석)

  • Park, Sang-Seob;Lee, Seongjin;Jun, Yong-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.481-488
    • /
    • 2021
  • The satellite telecommand processing system is the only way to provide telecommands for status monitoring, control, and mission execution. Domestic satellites can be divided into science, technology, and multi-purpose satellites, and geostationary satellites. These Satellites uses CCSDS standard protocol to communicate with ground stations. However, existing domestic satellites use only software to decode telecommands which increases cost of software development and verification of the developed software. Performance of software only approach is relatively low compared to hardware. In this paper, we present ASIC processing system specifically designed to decode telecommands. The system consists of a telecommand RAM, a protocol RAM/ROM, an ASIC, an interface unit of FPGA, and a relay block. The system handles general commands and pulse commands that are used in satellites. We established a ground station equipment and test environment to verify the system functionality, The result shows that our system reduces the development cost by 1/5 and improves the performance by 105 times compared to the previous systems that decode telecommands only by software.

RAM Modeling and Analysis of Earth Observation Constellation Satellites (지구관측 군집위성의 RAM 모델링 및 분석)

  • Hongrae Kim;Seong-keun Jeong;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • In the recent era of NewSpace, unlike high-reliability satellites of the past, low-reliability satellites are being developed and mass-produced at a lower cost to launch constellations satellites. To achieve cost-effective cluster satellite development, satellite users and developers need to assess the feasibility of maintaining mission performance over the expected lifespan when cluster satellites are launched. Plans for replacements due to random failures should also be established to maintain performance. This study proposed a method for assessing system reliability and availability to maintain mission performance and establish replacement strategies for Earth observation constellation satellites. In this study, a constellation reliability and availability model considering mission performance required for a satellite constellation, situations of satellite backup, and additional ground backups was established. The reliability model was structured based on the concept of a k-out-of-n system and the availability model used a Markov chain model. Based on the proposed reliability model, the minimum number of satellites required to meet mission requirements was defined and satellites needed in orbit during the required mission period to satisfy mission reliability were calculated. This research also analyzed the number of spare satellites in orbit and on the ground required to meet the desired availability during required service period through availability analysis.

Magnitude Standardization Procedure for OWL-Net Optical Observations of LEO Satellites

  • Roh, Dong-Goo;Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Park, Sun-Youp;Park, Maru;Choi, Young-Jun;Bae, Young-Ho;Park, Young-Sik;Jang, Hyun-Jung;Cho, Sungki;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • As a governmentally approved domestic entity for Space Situational Awareness, Korea Astronomy and Space Science Institute (KASI) is developing and operating an optical telescopes system, Optical Wide-field PatroL (OWL) Network. During the test phase of this system, it is necessary to determine the range of brightness of the observable satellites. We have defined standard magnitude for Low Earth Orbit (LEO) satellites to calibrate their luminosity in terms of standard parameters such as distance, phase angle, and angular rate. In this work, we report the optical brightness range of five LEO Satellites using OWL-Net.

Genetic algorithm-based scheduling for ground support of multiple satellites and antennae considering operation modes

  • Lee, Junghyun;Kim, Haedong;Chung, Hyun;Ko, Kwanghee
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.89-100
    • /
    • 2016
  • Given the unpredictability of the space environment, satellite communications are manually performed by exchanging telecommands and telemetry. Ground support for orbiting satellites is given only during limited periods of ground antenna visibility, which can result in conflicts when multiple satellites are present. This problem can be regarded as a scheduling problem of allocating antenna support (task) to limited visibility (resource). To mitigate unforeseen errors and costs associated with manual scheduling and mission planning, we propose a novel method based on a genetic algorithm to solve the ground support problem of multiple satellites and antennae with visibility conflicts. Numerous scheduling parameters, including user priority, emergency, profit, contact interval, support time, remaining resource, are considered to provide maximum benefit to users and real applications. The modeling and formulae are developed in accordance with the characteristics of satellite communication. To validate the proposed algorithm, 20 satellites and 3 ground antennae in the Korean peninsula are assumed and modeled using the satellite tool kit (STK). The proposed algorithm is applied to two operation modes: (i) telemetry, tracking, and command and (ii) payload. The results of the present study show near-optimal scheduling in both operation modes and demonstrate the applicability of the proposed algorithm to actual mission control systems.

Residual Propellant Gauging Methods for Geostationary Satellites and Recent Technology Status (정지궤도위성의 잔여추진제량 측정방법 및 기술동향)

  • Park, Eungsik;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.10
    • /
    • pp.870-877
    • /
    • 2014
  • Geostationary satellites undergo various orbital perturbations and this results in location change. Therefore, all the geostationary satellites use the thruster in order to control the location change. For this purpose, the suitable amount of liquid propellant is mounted and the amount of propellant is reduced as time goes by. This means that the lifetime of the satellite depends on the residual propellant amount. Therefore precise residual propellant gauging is very important for the mitigation of economic losses arised from premature removal of satellite from its orbit, satellites replacement planning, slot management and so on. In this paper, we introduce the propellant gauging methods used in the geostationary satellites and the propellant gauging method studied in the laboratory level.

A Periodic Analysis of Sidereal Shifts for GPS Satellites and the Solar Wind Stream

  • Cho, Changhyun;Choi, Byung-Kyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • The sidereal day of a Global Positioning System (GPS) satellite was intended to equal one half of a sidereal day of the Earth. However, the sidereal day of GPS satellites has become unequal to one half of a sidereal day of the Earth. This is fundamentally caused by the non-sphericity of the Earth and the gravity of the Moon. The difference between sidereal days of GPS satellites and the Earth is known as a sidereal shift. The details surrounding sidereal shifts and their origins have yet to be fully understood. We calculated the periodicity of sidereal shifts for GPS satellites using broadcast ephemeris data. To conduct a periodic analysis of the sidereal shift, we employ the Lomb-Scargle periodogram method. It shows that the orbit periods of GPS satellites have small-amplitude perturbations with a 13.6-day period. In addition, we compare the GPS satellite orbit periods with the periodicity of geomagnetic indices and the solar wind parameters to identify the cause of the perturbations. Our results suggest that the solar wind stream might also affect the 13.6-day period of the sidereal shifts.

Recent Trend of the Configuration Design of High Resolution Earth Observation Satellites (고해상도 지구관측위성 본체 형상설계 동향)

  • Lim, Jae-Hyuk;Kim, Kyung-Won;Kim, Sun-Won;Kim, Jin-Hee;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • The goal of the paper is to discuss the recent trend of the configuration of high resolution LEO(Low Earth Orbit) EO(Earth Observation) satellites. The satellite configuration is decided by considering several factors such as mission, payloads, launch vehicle, propulsion and attitude control module. The advent of commercial companies selling satellite's images in 2000's requires additional changes of the satellite system to be capable of obtaining many high resolution images quickly. In order to meet customer's needs, the overall configuration of satellites is designed to be compact and stable without the loss of structural integrity and reliability. Among design changes, the configuration change of satellites is treated intensively in the paper.

  • PDF

Design and Test Flash-based Storage for Small Earth Observation Satellites (소형 지구 관측 위성용 플래시 기반 저장장치 설계 및 시험)

  • Baek, Inchul;Park, Hyoungsic;Hwang, Kiseon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.253-259
    • /
    • 2018
  • Recently, small satellite industries are rapidly changing. Demand for high performance small satellites is increasing with the expansion of Earth Observation Satellite market. A next-generation small satellites require a higher resolution image storage capacity than before. However, there is a problem that the HW configuration of the existing small satellite image storage device could not meet these requirements. The conventional data storing system uses SDRAM to store image data taken from satellites. When SDRAM is used in small satellite platform of a next generation, there is a problem that the cost of physical space is eight times higher and satellite price is two times higher than NAND Flash. Using the same satellite hardware configuration for next-generation satellites will increase the satellite volume to meet hardware requirements. Additional cost is required for structural design, environmental testing, and satellite launch due to increasing volume. Therefore, in order to construct a low-cost, high-efficiency system. This paper shows a next-generation solid state recorder unit (SSRU) using MRAM and NAND Flash instead of SDRAM. As a result of this research, next generation small satellite retain a storage size and weight and improves the data storage space by 15 times and the storage speed by 4.5 times compare to conventional design. Also reduced energy consumption by 96% compared to SDRAM based storage devices.