• Title/Summary/Keyword: satellite school

Search Result 851, Processing Time 0.024 seconds

A Study on the Building Height Estimation and Accuracy Using Unmanned Aerial Vehicles (무인비행장치기반 건축물 높이 산출 및 정확도에 관한 연구)

  • Lee, Seung-weon;Kim, Min-Seok;Seo, Dong-Min;Baek, Seung-Chan;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.2
    • /
    • pp.79-86
    • /
    • 2020
  • In order to accommodate the increase in urban population due to government-led national planning and economic growth, many buildings such as houses and business building were supplied. Although the building law was revised and managed to manage the supplied buildings, for the sake of economic benefit, there have been buildings that are enlarged or reconstructed without declaring building permits. In order to manage these buildings, on-site surveys were conducted. but it has many personnel consumption. To solve this problem, a method of using a satellite image and a manned aircraft is utilized, but it is diseconomical and a renewal cycle is long. In addition, it is not utilized to the height, and although it is judged by the shading of the building, it has limitations that it must be calculated individually. In this study, height of the building was calculated by using the unmanned aerial vehicle with low personnel consumption, and the accuracy was verified by comparison with the building register and measured value. In this study, spatial information was constructed using a fast unmanned aerial vehicle with low manpower consumption and the building height was calculated based on this. The accuracy by comparing the calculated building height with the building register and the actual measurement.

Biodiversity Conservation and Carbon Sequestration in Agroforestry Systems of the Mbalmayo Forest Reserve

  • Mey, Christian Boudoug Jean;Gore, Meredith L.
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.91-103
    • /
    • 2021
  • We conducted an analysis of agroforestry system efficiency to conserve biodiversity in the Mbalmayo Forest Reserve (MFR) between March 2018 and June 2018. A synthesis of forest fragmentation data observed on multiple strata and scale satellite imageries over 31 years, between 1987 and 2018 as well as, the use of both a floristic and a faunal surveys, revealed that although 29.28% of natural forests was fragmented and converted to agroforests landscapes, banana and cocoa based agroforest appeared to perform the most relevant records in carbon storage and to attract wild terrestrial and avifauna. Analysis of NDVI, NDWI and Iron Oxyde helped monitor the vegetation cover of the reserve, and differentiate natural and fragmented classes, majority of conserved forest wetlands and agroforestry systems, and a minority of natural dryland forest. Further analysis also revealed significant correlations between NDVI and Shannon Index, and between NDVI and carbon stock. Based on the NDVI value and the equation Y=3.827×X-1.587 (where Y for the carbon stocks and X for NDVI value), we estimated the total carbon stock of the forest reserve at about 99557.6 tonnes, and its mean value at about 8.491 tons/ha. Nevertheless, environmental efforts to sustainably manage agroforestry landscape appear to be a relevant key to conserve wild biodiversity and mitigate climate change at the level of the Mbalmayo Forest Reserve. If anthropogenic activities have deeply changed the reserve's natural landscape, reduced its carbon sequestration performance, and wildlife conservation status, forest wetlands appear to remain its most conserved places and the best refuge for wild fauna still occurring in diverse strata of the MFR.

Shoreline Changes and Erosion Protection Effects in Cotonou of Benin in the Gulf of Guinea

  • Yang, Chan-Su;Shin, Dae-Woon;Kim, Min-Jeong;Choi, Won-Jun;Jeon, Ho-Kun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.803-813
    • /
    • 2021
  • Coastal erosion has been a threat to coastal communities and emerged as an urgent problem. Among the coastal communities that are under perceived threat, Cotonou located in Benin, West Africa, is considered as one of the most dangerous area due to its high vulnerability. To address this problem, in 2013, the Benin authorities established seven groynes at east of Cotonou port, and two additional intermediate groynes have recently been integrated in April 2018. However, there is no quantitative analysis of groynes so far, so it is hard to know how effective they have been. To analyze effectiveness, we used optical satellite images from different time periods, especially 2004 and 2020, and then compared changes in length, width and area of shoreline in Cotonou. The study area is divided into two sectors based on the location of Cotonou port. The difference of two areas is that Sector 2 has groynes installed while Sector 1 hasn't. As result of this study, shoreline in Sector 1 showed accretion by recovering 1.20 km2 of area. In contrast, 3.67 km2 of Sector 2 disappeared due to coastal erosion, although it has groynes. This may imply that groynes helped to lessen the rate of average erosion, however, still could not perfectly stop the coastal erosion in the area. Therefore, for the next step, we assume it is recommended to study how to maximize effectiveness of groynes.

The Use of Social Media among First-Year Student Groups: A Uses and Gratifications Perspective

  • Owusu-Ansah, Christopher M.;Arthur, Beatrice;Yebowaah, Franklina Adjoa;Amoako, Kwabena
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.11 no.4
    • /
    • pp.7-34
    • /
    • 2021
  • The purpose of the study was to explore the uses and gratification of social media among first-year student groups at a satellite campus of a public university in Ghana. The study employed a descriptive survey design. The study involved all 1061 first-year university students in six academic departments of the College. A total of 680 (64%) participants returned validly completed copies of the questionnaire. Descriptive statistics and thematic analysis were employed for data analysis. The findings indicate that WhatsApp was the most popular application for social media groups, while a need for information-sharing, peer-tutoring and learning, and finding and keeping friends were the primary motivations for joining social media groups. First-year students are involved mainly in reactive activities, as most engage when solving an academic assignment through group discussions. Though challenges persist, such as posting of unwanted images, inadequate participation, and ineffective and irrelevant communication, most are willing to continue their social media groups' membership in the long term. This study provides valuable insight into transitioning students' lived experiences on social media from the group perspective. These insights are valuable conceptually and practically to academic counsellors, librarians and student affairs officers who are expected to provide on-going education on (social) media literacy to first-year students to enhance the adjustment process. The study is the first of its kind in Ghana that investigates social media group participants' exit intentions.

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

Disaster Prediction, Monitoring, and Response Using Remote Sensing and GIS (원격탐사와 GIS를 이용한 재난 예측, 감시 및 대응)

  • Kim, Junwoo;Kim, Duk-jin;Sohn, Hong-Gyoo;Choi, Jinmu;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.661-667
    • /
    • 2022
  • As remote sensing and GIS have been considered to be essential technologies for disasters information production, researches on developing methods for analyzing spatial data, and developing new technologies for such purposes, have been actively conducted. Especially, it is assumed that the use of remote sensing and GIS for disaster management will continue to develop thanks to the launch of recent satellite constellations, the use of various remote sensing platforms, the improvement of acquired data processing and storage capacity, and the advancement of artificial intelligence technology. This spatial issue presents 10 research papers regarding ship detection, building information extraction, ocean environment monitoring, flood monitoring, forest fire detection, and decision making using remote sensing and GIS technologies, which can be applied at the disaster prediction, monitoring and response stages. It is anticipated that the papers published in this special issue could be a valuable reference for developing technologies for disaster management and academic advancement of related fields.

Space Economy, Ecosystem Strategies for LEO 5G-NTN Space Communications (우주경제, LEO 5G-NTN 우주통신 생태계 전략)

  • Byungwoon Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-66
    • /
    • 2023
  • The latest global issues are the Space economy and low-orbit Space communication. 3GPP announced Release 17 standardization in June 2022, and in this regard, the United States prepared a strategy to enhance the competitiveness of the low-orbit 5G-NTN Space industry, and create an ecosystem at the national level in March 2023. Global smartphone semiconductor manufacturers have announced the development and verification results of standard-based chip technology, and satellite communication operators are launching low-orbit 5G-NTN Space communication services and rate products through convergence between terrestrial communication networks. This study diagnoses the current status of Korea's low-orbit 5G-NTN space communication ecosystem. We present our ecosystem creation strategy in terms of fair competition in the market, the service legal system, and the national R&D governance system.

New Generation of Imaging Radars for Earth and Planetary Science Applications

  • Wooil M. Moon
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.14-14
    • /
    • 2003
  • SAR (Synthetic Aperture Radar) is an imaging radar which can scan and image Earth System targets without solar illumination. Most Earth observation Shh systems operate in X-, C-, S-, L-, and P-band frequencies, where the shortest wavelength is approximately 1.5 cm. This means that most opaque objects in the SAR signal path become transparent and SAR systems can image the planetary surface targets without sunlight and through rain, snow and/or even volcanic ash clouds. Most conventional SAR systems in operation, including the Canada's RADARSAT-1, operate in one frequency and in one polarization. This has resulted in black and with images, with which we are familiar now. However, with the launching of ENVTSAT on March 1 2002, the ASAR system onboard the ENVISAT can image Earth's surface targets with selected polarimetric signals, HH+VV, HH+VH, and VV+HV. In 2004, Canadian Space Agency will launch RADARSAT-II, which is C-band, fully polarimetric HH+VV+VH+HV. Almost same time, the NASDA of Japan will launch ALOS (Advanced land Observation Satellite) which will carry L-band PALSAR system, which is again fully polarimetric. This means that we will have at least three fully polarimetric space-borne SAR system fur civilian operation in less than one year. Are we then ready for this new all weather Earth Observation technology\ulcorner Actual imaging process of a fully polarimetric SAR system is not easy to explain. But, most Earth system scientists, including geologists, are familiar with polarization microscopes and other polarization effects in nature. The spatial resolution of the new generation of SAR systems have also been steadily increased, almost to the limit of highest optical resolution. In this talk some new applications how they are used for Earth system observation purpose.

  • PDF

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF