• Title/Summary/Keyword: satellite range

Search Result 761, Processing Time 0.026 seconds

Effect of satellite link noise for satellite range measurement using tone method (Tone 방식을 사용한 위성 거리 측정에 대한 위성 링크 잡음의 영향)

  • Kim Young Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.9-16
    • /
    • 2005
  • The performance of satellite range measurement using tone method was analyzed in the presence of satellite link AWGN. The phase errors in range measurement are generated by AWGN of satellite up- and down-link and the degradations of satellite range measurement are dependent on the transmission mode and loop bandwidth of satellite measurement system. The analyzed effects for satellite measurement in presence of satellite link noise were also analyzed with the measured satellite range data via satellite range measurement system operating in satellite link AWGN. In RAU mode, the satellite range differences of 14.4 to 40.6 m were occurred according to the loop bandwidth of satellite range measurement system and the degradation of 0.3 dB compared with theoretical value was generated under condition of the signal-to-noise ratio of 43 dB. In RAU and TM mode, the performances of range measurement were approximately agreed to the that of RAU mode. In order to get the equal performance characteristics with RAU mode, the signal-to-noise ratio of satellite link for RAU and TM mode should be increased by signal power of 2.3 dB, which is a power loss due to transmission of telemetry signal.

A Study on the Optimal Operation of Satellite Range Measurement for KOMPSAT II (다목적실용 위성 2호의 위성 거리 측정 최적 운용 방안 연구)

  • Kim, Young-Wan;Ahn, Sang-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2010
  • Based on the analyses of satellite range measurement, the optimal operation for satellite range measurement of KOMPSAT II, which operates in the low-earth orbit, was proposed in this paper. The orbital motion of the satellite was analyzed in viewpoints of radial velocity, acceleration and speed of acceleration. Correspondingly the effects for satellite ranging signal due to satellite motion were analyzed in viewpoints of doppler phenomena, which are doppler frequency, doppler rate and speed of doppler rate. The accuracy and ambiguity probability of the satellite range measurement were quantitatively analyzed under various circumstances. The optimal operation parameters for satellite range measurement were also analyzed based on the analyzed results. The analyzed results in this paper can be utilized in design of small-sized ground station for satellite range measurement.

The effect of noise and doppler for range measurement of low orbit satellite using tone method (톤 방식을 사용한 저궤도 위성 거리 측정에서의 잡음과 도플러 영향 분석)

  • 김영완;박동철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.641-650
    • /
    • 2000
  • The effects of noise and doppler for low orbit satellite range measurement using tone method are represented in this paper. Also the optimal noise bandwidth of range signal detection circuit which is used for range measurement system of KOMPSAT is proposed. Based on the effects of satellite orbit parameters via the deduction of dynamic motion characteristics of low orbit satellite and signal to noise spectral density of range measurement signal, the effects of noise and doppler for range measurement system are analyzed. The effect of satellite link noise is decreased, but the effect for doppler is increased as the PLL noise bandwidth of range signal detection circuit is increased. The validation of analyzed effect is verified via comparison of measurement results of KOMPSAT's range measurement system and simulation results in environments of low orbit satellite.

  • PDF

A Study on the Satellite Launch Vehicle Separation Detection Interface to Improve the Reliability of the Launch and Early Operation Phase

  • Lee, Nayoung;Kwon, Dong-young;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Cheon, Yee-Jin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.57-63
    • /
    • 2021
  • The launch vehicle (LV) separation detection interface of the satellite, which is designed to initiate the launch and early operation phase (LEOP) for S-band data transmission and the solar array deployment after the LV separation, is one of the hazard items at the launch site. Therefore, this interface should satisfy the single-fault tolerance requirement for the range safety. In this paper, we discuss the LV separation detection interfaces for two different satellite launch configurations and propose a method to guarantee for the satellite to start the LEOP even under the emergency case such as a partial separation from the LV. Furthermore, the proposed method meets the range safety requirement of the launch site. As this method only changes the external harness configuration of the satellite, it increases the reliability of the satellite early operation without any modification of the existing internal logics to detect the separation event.

Antenna Test Range for Telecommunication Satellite (통신위성용 안테나 테스트 레인지)

  • Lim, Seong-Bin;Kim, Tae-Youn;Choi, Seok-Won;Sim, Eun-Sup
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.52-59
    • /
    • 2007
  • Telecommunication satellite consists of a bus system and an RF payload system with high efficiency and high gain reflector antennas. Antenna measurement and also RF system performance (antenna under test, payload and satellite level) have to be evaluated enough before launching in the far-field range or equivalent test range. Basically far-field range is required in a range from two hundred meters to several kilo meters, and it is highly constrained to the externa1 environment, like the RF and the whether environment So the compact antenna test range is developed and used efficiently without external environments as in-door facility. This paper describes the configuration of the compact antenna test range, the range error, and the physical concept of the plane wave illumination Also, it provides a overall design of the anechoic chamber and range parameter values to accommodate the precision measurements in antenna test range.

  • PDF

Virtual Satellite and Virtual Range Measurement Generation for the GNSS Position Accuracy Improvement (사용자 위치해 정확도 향상을 위한 가상위성 및 가상거리측정값 생성)

  • Song, Choongwon;Ahn, Jongsun;Choi, Moonseok;Jang, JinHyeok;Heo, MoonBeom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.757-765
    • /
    • 2017
  • GNSS (Global Navigation Satellite System) Position Accuracy depends on pseudo-range measurement and DOP (Dilution Of Precision) which indicates about navigation satellite geometry. Pseudo-Range has many error sources such as satellite clock, orbit, ionosphere, troposphere, multipath and so on. For the improvement of the accuracy, user can use corrected pseudo-range in DGPS (Differential Global Positioning System), which is one of the relative positioning methods. But, stationary station is needed in relative positioning. In case of DOP, Signal reception environment is important. If receiver sets in the center of city, it could be interrupted reception by buildings. This environment leads to decrease the number of visible satellites and to increase DOP. This paper proposes the concept of GNSS positioning with virtual satellites which have usable VRM (Virtual Range Measurement). Via virtual satellites and VRM, users could get an accurate position. Especially referred virtual satellites constellation has an effect on vertical error.

Analysis of Inter-satellite Ranging Precision for Gravity Recovery in a Satellite Gravimetry Mission

  • Kim, Pureum;Park, Sang-Young;Kang, Dae-Eun;Lee, Youngro
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2018
  • In a satellite gravimetry mission similar to GRACE, the precision of inter-satellite ranging is one of the key factors affecting the quality of gravity field recovery. In this paper, the impact of ranging precision on the accuracy of recovered geopotential coefficients is analyzed. Simulated precise orbit determination (POD) data and inter-satellite range data of formation-flying satellites containing white noise were generated, and geopotential coefficients were recovered from these simulated data sets using the crude acceleration approach. The accuracy of the recovered coefficients was quantitatively compared between data sets encompassing different ranging precisions. From this analysis, a rough prediction of the accuracy of geopotential coefficients could be obtained from the hypothetical mission. For a given POD precision, a ranging measurement precision that matches the POD precision was determined. Since the purpose of adopting inter-satellite ranging in a gravimetry mission is to overcome the imprecision of determining orbits, ranging measurements should be more precise than POD. For that reason, it can be concluded that this critical ranging precision matching the POD precision can serve as the minimum precision requirement for an on-board ranging device. Although the result obtained herein is about a very particular case, this methodology can also be applied in cases where different parameters are used.

AIS Implementation and Experiment with the Korean Satellite

  • Lee Han-Jin;Lee Changmin;Kang Chang-Gu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.08a
    • /
    • pp.119-123
    • /
    • 2000
  • In this paper, authors introduce about Wide Range Vessel Traffic Service (VTS) system using Automatic Identification System (AIS). In order to develop the prototype of Wide Range VIS system, Korean satellite is used for data communication system for AIS. In this system, ship position obtained by using GPS is reported automatically to VTS center through Korean satellite. By using this system, VTS center can cover more wide area than the case using radar only. And the uncertainty of information is decrease. The results of test show the good possibility of VTS using satellite and AIS.

  • PDF

GPS Anomaly Analysis and Pseudorange Accuracy Improvement by Anomalous Satellite Elimination

  • Yoo, Yun-Ja;Cho, Deuk-Jae;Park, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.7
    • /
    • pp.511-516
    • /
    • 2010
  • GPS anomaly has increased according to the degradation of satellite performance, and many GPS users could be exposed to any kinds of error-included signals without any previous notice when unscheduled error occurred. RSIM (Reference Station Integrity Monitors) is a typical monitoring method to broadcast PRC (Pseudo Range Correction) for users. However, there were some cases that the receiver detected the anomalous satellite's signal even though it was unhealthy set, consequently it occurred a large range error. Then it is important to monitor the integrity of GPS signal and it is needed to devise the correction method of pseudorange by eliminating error-occurred PRN for notification to GPS users when it is monitored that the anomaly occurred. This paper proposes the basic concept of how to correct the pseudorange. The paper also shows the analysis results of PRN10 GPS anomaly occurred on day 39 in 2007 with corrected results by eliminating anomaly satellite (PRN10). The proposed correction method shows decreased pseudorange error range compared to the case when the anomaly satellite were used.