Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.
본 연구는 계측자료가 부족한 유역을 대상으로 위성강우 활용 및 위성강우의 보정방법을 통해 홍수량 추정의 기술적인 방법을 제시하는 것을 목적으로 하였다. 연구대상유역은 모로코 세부강 유역을 대상으로 하였다. 세부강 유역 홍수량 추정을 위한 모형은 IFAS(Integrated Flood Analysis System)와 GRM(Grid baed Rainfall-Runoff Model)을 이용하였다. 연구 유역에 대한 강우자료는 일일관측의 지상계측 자료와 시간계측 위성강우자료를 이용하였다. 위성강우를 이용한 홍수분석에서 일일 지상계측 강우량과 위성강우의 시간계측 자료를 합성하여 위성강우자료를 수정하였다. 지형자료는 90m 공간해상도의 Shuttle Radar Topographic Mission DEM(SRTM DEM)과, 1km 공간해상도의 Global map의 토지피복도와 US Food and Agriculture Organization(US FAO)의 Harmonized World Soil Database(HWSD) 토양도를 이용하였다. 과소추정되는 위성강우는 지상계측 자료를 활용하여 보정하였다. 수정된 위성강우를 이용한 유출분석에서는 첨두유출량이 IFAS는 $5,878{\sim}7,434m^3/s$, GRM은 $6,140{\sim}7,437m^3/s$의 유출이 발생하는 것으로 분석되었다. 그러므로 2009~2010년에 발생한 세부강 유역의 첨두홍수량은 $5,800m^3/s$에서 $7,500m^3/s$의 범위에서 발생한 것으로 추정되었다. 보정된 위성강우를 활용한 홍수량 추정결과는 두 모형 모두 유사한 홍수량을 나타내었다. 따라서 본 연구에서 제시한 위성강우의 보정기법은 계측자료가 부족한 지역의 적정 홍수량 추정에 적용될 수 있을 것으로 사료된다.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.660-663
/
2006
Rainfall estimation is important to weather forecast, flood control, hydrological plan. The empirical and statistical methods by measured data(surface rain gauge, rainfall radar, Satellite) is commonly used for rainfall estimation. In this study, the rainfall intensity for East Asia region was estimated using the empirical relationship between SSM/I data of DMSP satellite and brightness temperature of GEOS-9(10.7${\mu}m$) with cloud types(ISCCP and MSG classification). And the empirical formula for rainfall estimation was produced by PMM (Probability Matching Method).
Global Flood Alert System (GFAS) is an attempt to make the best use of satellite rainfall data in flood forecasting. The project of GFAS is promoted both by Ministry of Land, Infrastructure and Transport-Japan (MLIT) and Japan Aerospace Exploration Agency (JAXA), under which Infrastructure Development Institute-Japan (IDI) has been working on the development of Internet-based information system and just launched trial run of GFAS in April 2006 on International Flood Network (IFNet) website. The function of GFAS is to connect space agencies and hydrological services/river authorities in charge of flood forecasting and warning by providing global rainfall information in maps, text data e-mails and so on which is produced from binary global rainfall data downloaded from National Aeronautics and Space Administration (NASA) website. Although the effectiveness of satellite rainfall data in flood forecasting and warning has yet to be verified, satellite rainfall is expected to play an important role to strengthen existing flood forecasting systems by diversifying hydrological data source.
This study establishes a conceptual model to analyze heavy rainfall events in Korea using multi-functional transport satellite-1R satellite images. Three heavy rainfall episodes in two major synoptic types, such as synoptic low (SL) type and synoptic flow convergence (SC) type, are analyzed through a conceptual model procedure which proceeds on two steps: 1) conveyer belt model analysis to detect convective area, and 2) cloud top temperature analysis from black body temperature (TBB) data to distinguish convective cloud from stratiform cloud, and eventually estimate heavy rainfall area and intensity. Major synoptic patterns causing heavy rainfall are Changma, synoptic low approach, upper level low in the SL type, and upper level low, indirect effect of typhoon, convergence of tropical air in the SC type. The relationship between rainfall and TBBs in overall well resolved areas of heavy rainfall. The SC type tended to underestimate the intensity of heavy rainfall, but the analysis with the use of water vapor channel has improved the performance. The conceptual model improved a concrete utilization of images and data of satellite, as summarizing characteristics of major synoptic type causing heavy rainfall and composing an algorism to assess the area and intensity of heavy rainfall. The further assessment with various cases is required for the operational use.
Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.
Spatial precipitation data is one of the essential components in modeling hydrological problems. The estimation of these data has achieved significant achievements own to the recent advances in remote sensing technology. However, there are still gaps between the satellite-derived rainfall data and observed data due to the significant dependence of rainfall on spatial and temporal characteristics. An effective approach based on the Convolutional Neural Network (CNN) model to correct the satellite-derived rainfall data is proposed in this study. The Mekong River basin, one of the largest river system in the world, was selected as a case study. The two gridded precipitation data sets with a spatial resolution of 0.25 degrees used in the CNN model are APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks). In particular, PERSIANN-CDR data is exploited as satellite-based precipitation data and APHRODITE data is considered as observed rainfall data. In addition to developing a CNN model to correct the satellite-based rain data, another statistical method based on standard deviations for precipitation bias correction was also mentioned in this study. Estimated results indicate that the CNN model illustrates better performance both in spatial and temporal correlation when compared to the standard deviation method. The finding of this study indicated that the CNN model could produce reliable estimates for the gridded precipitation bias correction problem.
Precipitation is an important component of the hydrological cycle and a key input parameter for many applications in hydrology, climatology, meteorology, and weather forecasting research. Grid-based satellite rainfall products with wide spatial coverage and easy accessibility are well recognized as a supplement to ground-based observations for various hydrological applications. The error properties of satellite rainfall products vary as a function of rainfall intensity, climate region, altitude, and land surface conditions. Therefore, this study aims to evaluate the commonly used new global grid-based satellite rainfall product, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), using data collected at different spatial and temporal scales. Additionally, in this study, grid-based CHIRPS satellite precipitation data were used to evaluate the 2022 extreme drought. CHIRPS provides high-resolution precipitation data at 5 km and offers reliable global data through the correction of ground-based observations. A frequency analysis was performed to determine the precipitation deficit in 2022. As a result of comparing droughts in 2015, 2017, and 2022, it was found that May 2022 had a drought frequency of more than 500 years. The 1-month SPI in May 2022 indicated a severe drought with an average value of -1.8, while the 3-month SPI showed a moderate drought with an average value of 0.6. The extreme drought experienced in South Korea in 2022 was evident in the 1-month SPI. Both CHIRPS precipitation data and observations from weather stations depicted similar trends. Based on these results, it is concluded that CHIRPS can be used as fundamental data for drought evaluation and monitoring in unmeasured areas of precipitation.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.930-933
/
2006
A new algorithm for satellite microwave rainfall retrievals over the land of Taiwan using TMI (TRMM Microwave Imager) data on board TRMM (Tropical Rainfall Measuring Mission) satellite is described in this study. The scattering index method (Grody, 1991) was accepted to develop a rainfall estimation algorithm and the measurements from Automatic Rainfall and Meteorological Telemetry System (ARMTS) were employed to evaluate the satellite rainfall retrievals. Based on the standard products of 2A25 derived from TRMM/PR data, the rainfall areas over Taiwan were divided into convective rainfall area and stratiform rainfall areas with/without bright band. The results of rainfall estimation from the division of rain type are compared with those without the division of rain type. It is shown that the mean rainfall difference for the convective rain type is reduced from -6.2mm/hr to 1.7mm/hr and for the stratiform rain type with bright band is decreased from 10.7 mm/hr to 2.1mm/hr. But it seems not significant improvement for the stratiform rain type without bright band.
본 연구는 전지구 위성 강우자료와 글로벌 지형자료를 이용하여 유출분석을 수행하여 계측자료가 부족한 지역에 대한 강우-유출 관계를 파악할 수 있는 방법을 제시하는 것을 목적으로 하였다. 사용된 위성 강우자료는 CMORPH와 GSMaP_NRT자료를 사용하였고, 글로벌 지형자료는 GTOPO30 및 GLCC자료를 이용하였다. 유출분석을 위한 도구는 IFAS를 이용하였다. 강우 정확도 평가에서 관측강우자료와의 상관계수는 CMORPH 및 GSMaP_NRT에서 0.37 및 0.30로 분석되었다. IFAS를 이용한 유출분석에서 매개변수를 보정하지 않은 경우에도 위성 강우자료를 이용한 모의 첨두유출량이 관측유출량과의 상대오차가 낮았다. 따라서 계측자료가 없는 유역에서의 적용성이 있는 것으로 사료된다. 향후 대표적인 비접근 지역인 북한지역에 대하여 위성강우 및 글로벌 지형자료를 이용하여 유출분석에 활용할 계획이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.