• Title/Summary/Keyword: satellite positioning system

Search Result 575, Processing Time 0.023 seconds

Test Results of WADGPS System using Satellite-based Ionospheric Delay Model for Improving Positioning Accuracy

  • So, Hyoungmin;Jang, Jaegyu;Lee, Kihoon;Song, Kiwon;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • Most existing studies on the wide-area differential global positioning system (WADGPS) employed a grid ionosphere model for error correction in the ionospheric delay. The present study discusses the application of satellite-based ionospheric delay model that provides an error model as a plane function with regard to individual satellites in order to improve accuracy in the WADGPS. The satellite-based ionospheric delay model was developed by Stanford University in the USA. In the present study, the algorithm in the model is applied to the WADGPS system and experimental results using measurements in the Korean Peninsula are presented. Around 1 m horizontal accuracy was exhibited in the existing planar fit grid model but when the satellite-based model was applied, correction performance within 1 m was verified.

Performance Analysis of Wide-Area Differential Positioning Based on Regional Navigation Satellite System

  • Kim, Donguk;So, Hyoungmin;Park, Junpyo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • The position accuracy of the stand-alone Regional Navigation Satellite System (RNSS) users is more than tens of meters because of various error sources in satellite navigation signals. This paper focuses on wide-area differential (WAD) positioning technique, which is already applied in Global Navigation Satellite System (GNSS), in order to improve the position accuracy of RNSS users. According to the simulation results in the very narrow ground network in regional area, the horizontal position error of stand-alone RNSS is about RMS 11.6 m, and that of RNSS with WAD technique, named the WAD-RNSS, is about RMS 2.5 m. The accuracy performance has improved by about 78%.

Accuracy Assessment of IGSO and GEO of BDS and QZSS Broadcast Ephemeris using MGEX Products

  • Son, Eunseong;Choi, Heonho;Joo, Jungmin;Heo, Moon Beom
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.347-356
    • /
    • 2020
  • In this study, Inclined Geosynchronous Orbit (IGSO) and Geostationary Orbit (GEO) of BeiDou System (BDS) and Quasi Zenith Satellite System (QZSS) satellites positions and clock errors calculated by broadcast ephemeris and compared with Multi-GNSS Experiment (MGEX) products provided by five Analysis Centers (ACs). Root Mean Square Errors (RMSE) calculated for satellite position error. The IGSO results showed that 1.82 m, 0.91 m, 1.28 m in BDS and 1.34 m 0.36 m 0.49 m in QZSS and the GEO results showed that 2.85 m, 6.34 m, 6.42 m in BDS and 0.47 m, 4.79 m, 5.82 m in QZSS in the direction of radial, along-track and cross-track respectively. RMS calculated for satellite clock error. The IGSO result showed that 2.08 ns and 1.24 ns and the GEO result showed that 1.28 ns and 1.12 ns in BDS and QZSS respectively.

Quality Monitoring Comparison of Global Positioning System and BeiDou System Received from Global Navigation Satellite System Receiver

  • Son, Eunseong;Im, Sung-Hyuck
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2018
  • In this study, we implemented the data quality monitoring algorithm which is the previous step for real-time Global Navigation Satellite System (GNSS) correction generation and compared Global Positioning System (GPS) and BeiDou System (BDS). Signal Quality Monitoring (SQM), Data QM, and Measurement QM (MQM) that are well known in Ground Based Augmentation System (GBAS) were used for quality monitoring. SQM and Carrier Acceleration Ramp Step Test (CARST) of MQM result were divided by satellite elevation angle and analyzed. The data which are judged as abnormal are removed and presented as Root Mean Square (RMS), standard deviation, average, maximum, and minimum value.

Navigation Performance Analysis of KASS Test Signals

  • Daehee Won;Eunsung Lee;Chulhee Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.369-377
    • /
    • 2023
  • This paper presents the analysis results of navigation performance of Korea Augmentation Satellite System (KASS) test signals. Performance analysis was performed with Global Positioning System (GPS) and Satellite Based Augmentation System (SBAS) signals received from 7 KASS reference stations. And the performances were analyzed in terms of the signal strength, statistics for each SBAS message, coverage of ionospheric correction, accuracy, integrity, continuity, and availability. In addition, the navigation solutions provided by commercial receiver was analyzed and the performance experienced by general users was presented. Lastly, directions for further improvement of the KASS system were addressed. These performance analysis results can be used to confirm the feasibility of utilizing KASS in user applications.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

Performance Analysis of GNSS Residual Error Bounding for QZSS CLAS

  • Yebin Lee;Cheolsoon Lim;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.215-228
    • /
    • 2023
  • The State Space Representation (SSR) method provides individual corrections for each Global Navigation Satellite System (GNSS) error components. This method can lead to less bandwidth for transmission and allows selective use of each correction. Precise Point Positioning (PPP) - Real-Time Kinematic (RTK) is one of the carrier-based precise positioning techniques using SSR correction. This technique enables high-precision positioning with a fast convergence time by providing atmospheric correction as well as satellite orbit and clock correction. Currently, the positioning service that supports PPP-RTK technology is the Quazi-Zenith Satellite System Centimeter Level Augmentation System (QZSS CLAS) in Japan. A system that provides correction for each GNSS error component, such as QZSS CLAS, requires monitoring of each error component to provide reliable correction and integrity information to the user. In this study, we conducted an analysis of the performance of residual error bounding for each error component. To assess this performance, we utilized the correction and quality indicators provided by QZSS CLAS. Performance analyses included the range domain, dispersive part, non-dispersive part, and satellite orbit/clock part. The residual root mean square (RMS) of CLAS correction for the range domain approximated 0.0369 m, and the residual RMS for both dispersive and non-dispersive components is around 0.0363 m. It has also been confirmed that the residual errors are properly bounded by the integrity parameters. However, the satellite orbit and clock part have a larger residual of about 0.6508 m, and it was confirmed that this residual was not bounded by the integrity parameters. Users who rely solely on satellite orbit and clock correction, particularly maritime users, thus should exercise caution when utilizing QZSS CLAS.

Edge Computing-based Differential Positioning Method for BeiDou Navigation Satellite System

  • Wang, Lina;Li, Linlin;Qiu, Rui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.69-85
    • /
    • 2019
  • BeiDou navigation satellite system (BDS) is one of the four main types of global navigation satellite systems. The current system has been widely used by the military and by the aerospace, transportation, and marine fields, among others. However, challenges still remain in the BeiDou system, which requires rapid responses for delay-sensitive devices. A differential positioning algorithm called the data center-based differential positioning (DCDP) method is widely used to avoid the influence of errors. In this method, the positioning information of multiple base stations is uploaded to the data center, and the positioning errors are calculated uniformly by the data center based on the minimum variance or a weighted average algorithm. However, the DCDP method has high delay and overload risk. To solve these problems, this paper introduces edge computing to relieve pressure on the data center. Instead of transmitting the positioning information to the data center, a novel method called edge computing-based differential positioning (ECDP) chooses the nearest reference station to perform edge computing and transmits the difference value to the mobile receiver directly. Simulation results and experiments demonstrate that the performance of the ECDP outperforms that of the DCDP method. The delay of the ECDP method is about 500ms less than that of the DCDP method. Moreover, in the range of allowable burst error, the median of the positioning accuracy of the ECDP method is 0.7923m while that of the DCDP method is 0.8028m.

KINEMATIC GPS POSITIONING WITH NETWORK-DERIVED IONOSPHERIC DELAYS

  • Hong, Chang-Ki;Grejner-Brzezinska, Dorota A.;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.386-389
    • /
    • 2007
  • Currently, fast and accurate long baseline positioning in kinematic mode is a challenging topic, but positional accuracy can be improved with the help of the network-derived external ionospheric corrections. To provide not only ionospheric corrections, but also their variances, satellite-by-satellite interpolation for the ionospheric delays is performed using the least-squares collocation (LSC) method. Satellite-by-satellite interpolation has the advantage in that the vertical projection used in single-layer ionospheric model is not required. Also, more reliable user positioning and the corresponding accuracy assessment can be obtained by providing not only external ionospheric corrections but also their variances. The rover positioning with and without the external ionospheric delays in both rapid-static and kinematic mode was performed and analyzed. The numerical results indicate that the improvement in the positioning quality is achieved using the proposed method. With the TAMDEF network in Antarctica, 18 % improvement in mean time-to-fix in kinematic mode was achieved.

  • PDF