• Title/Summary/Keyword: satellite orbit anomaly

Search Result 24, Processing Time 0.023 seconds

Anomaly Detection of IGS Predicted Orbits for Near-Real-Time Positioning Using GPS (GPS기반 준실시간 위치추적을 위한 IGS 예측궤도력 이상 검출)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.953-961
    • /
    • 2011
  • IGS (International GNSS Service) predicted orbits contained in IGS ultra-rapid orbits is suitable for real-time or near-real-time precise positioning. In this paper, we analyzed orbit anomalies of the IGS predicted orbits and detected the anomalies NANU (Current Notice Advisories to NAVSTAR Users) messages and IGS BRDC (Broadcast Ephemerides). As a results, the orbit anomalies of the predicted orbits were observed 93 times in 2010. In case of using the NANUs, we could get detection performance of 88% about the IGS predicted orbits's anomalies. And we could achieve 95% detection performance when the NANUs and BRDCs were used together.

Analysis of MSAS Ionosphere Correction Messages and the Effect of Equatorial Anomaly (MSAS 전리층 보정정보 및 적도변이에 의한 영향 분석)

  • Jeong, Myeong-Sook;Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • Japanese MSAS (Multi-functional Satellite Augmentation System) satellites have been transmitting GPS satellite orbit and ionosphere correction information since 2005. MSAS coverage includes Far East Asia, and it can improve the accuracy and integrity of GPS position solutions in Korea. This research analyzed the ionosphere correction information from the MSAS ionosphere correction data. The ionosphere delay data observed by a dual frequency receiver is compared with the MSAS ionosphere correction data. The variation of MSAS GIVE values are analyzed in connection with the equatorial anomaly and ionosphere scintillation.

  • PDF

Design, Implementation, and Validation of KOMPSAT-2 Software Simulator

  • Lee, Sang-Uk;Lee, Byoung-Sun;Kim, Jae-Hoon;Cho, Sung-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.140-152
    • /
    • 2005
  • In this paper, we present design features, implementation, and validation of a satellite simulator subsystem for the Korea Multi-Purpose Satellite-2 (KOMPSAT-2). The satellite simulator subsystem is implemented on a personal computer to minimize costs and trouble on embedding onboard flight software into the simulator. An object-oriented design methodology is employed to maximize software reusability. Also, instead of a high-cost commercial database, XML is used for the manipulation of spacecraft characteristics data, telecommand, telemetry, and simulation data. The KOMPSAT-2 satellite simulator subsystem is validated by various simulations for autonomous onboard launch and early orbit phase operations, anomaly operation, and science fine mode operation. It is also officially verified by successfully passing various tests such as the satellite simulator subsystem test, mission control element system integration test, interface test, site installation test, and acceptance test.

  • PDF

THE INTERFACE CONFIGURATION OF OVERSEA STATIONS AND OPERATION PLAN FOR KOMPSAT-2 LEOP

  • Baek Hyun-Chul;Kim Hae-Dong;Ahn Sang-Il;Kim Eun-Kyou
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.557-560
    • /
    • 2005
  • The Korea Multi-Purpose SATellite-2 (KOMPSAT -2) will be launched into a circular sun synchronous orbit in Dec. 2005. For the mission operation of the KOMPSAT-2 satellite, KARl Ground Station (KGS) consists of the Mission Control Elements (MCE), Image Reception & Processing Elements (IRPE) and the overseas stations. For the oversea stations, the Kongsberg Satellite Services (KSAT) is the prime supplier of support service. KSAT has the capability to provide Tracking Telemetry and Commanding (TT&C) nominal, contingency and anomaly support for every single orbit for most polar orbiting satellites. Also KSAT provides nodal service through the network management functionality for all oversea ground stations. This paper describes the oversea stations and the support for Launch and nominal TT&C services for KOMPSAT-2 and the operation plan for KOMPSAT-2.

  • PDF

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.

Fault Management Design Verification Test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit Satellite (저궤도위성의 전력계 및 자세제어계 고장 관리 설계 검증시험)

  • Lee, Sang-Rok;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.14-23
    • /
    • 2013
  • Fault management design of the satellite describes preparations for failures which can occur during operational phase. Fault management design contains detection and isolation function of anomaly, and also it contains function to maintain the satellite in safe condition until the ground station finds out a cause of failure and takes a countermeasure. Unlike normal operation, safing operation is automatically performed by Power Control and Distribution Unit and Integrated Bus Management Unit which loads Flight Software without intervention of ground station. Since fault management operation is automatical, fault management logic and functionality of relevant hardware should be thoroughly checked during ground test phase, and error which is similar to actual should be carefully applied without damage. Verification test for fault management design is conducted for various subsystems of satellite. In this paper, we show the design process of fault management design verification test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit satellite flight model and the test results.

Mission Operation Capability Verification Test for Low Earth Orbit(LEO) Satellite by Utilizing Interface Environment between LEO Satellite and Ground Station (저궤도 위성과 지상국간 접속 환경을 활용한 임무수행능력 지상 검증 시험)

  • Lee, Sang-Rok;Koo, In-Hoi;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.142-149
    • /
    • 2014
  • After launch of Low Earth Orbit(LEO) satellite, Initial Activation Checkout(IAC) and Calibration and Validation(Cal & Val) procedure are performed prior to enter normal operation phase. During normal operation phase, most of the time is allocated for mission operation except following up measures to anomaly and orbit maintenance. Since mission operation capability is key indicator for success of LEO satellite program and consistent with promotion purpose of LEO satellite program, reliability should be ensured by conducting through test. In order to ensure reliability by examining the role of LEO satellite and ground station during ground test phase, realistic test scenario that is similar to actual operation conditions should be created, and test that aims to verify full mission cycle should be performed by transmitting created command and receiving image and telemetry data. This paper describes the test design and result. Consideration items for test design are described in detail and result of designed test items are summarized.

A Development of GPS SIS Anomalies Generation Software

  • Han, Younghoon;Ko, Jaeyoung;Shin, Mi Young;Cho, Deuk Jae
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • In this paper, GPS signal anomaly generation software is proposed which can be used for the analysis of GPS signal anomaly effect and the design, verification, and operation test of anomalous signal monitoring technique. For the implementation of anomalous signal generation technique, anomalous signals are generated using a commercial signal generation simulator, and their effects and characteristics are analyzed. An error model equation is proposed from the result of analysis, and the anomalous signal generation software is constructed based on this equation. The proposed anomalous signal generation software has high scalability so that users can easily utilize and apply, and is economical as the additional cost for purchasing equipment is not necessary. Also, it is capable of anomalous signal generation based on real-time signal by comparing with the commercial signal generation simulator.

On-board and Ground Autonomous Operation Methods of a Low Earth Orbit Satellite for the Safety Enhancement (저궤도 위성의 안전성 향상을 위한 위성체 및 지상의 자율 운영 방안)

  • Yang, Seung-Eun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.51-57
    • /
    • 2016
  • Many kinds of telemetry should be monitored to check the state of spacecraft and it leads the time consumption. However, it is very important to define the status of satellite in short time because the contact number and time of low earth orbit satellite is limited. Also, on-board fault management should be prepared for non-contact operation because of the sever space environment. In this paper, on-board and ground autonomous operation method for the safety enhancement is described. Immediate fault detection and response is possible in ground by explicit anomaly detection through satellite event and error information. Also, satellite operation assistant system is proposed for ground autonomy that collect event sequence in accordance with related telemetry and recommend or execute an appropriate action for abnormal state. Critical parameter monitoring method with checking rate, mode and threshold is developed for on-board autonomous fault management. If the value exceeds the limit, pre-defined command sequence is executed.

A Study on Design of Effect Analysis Tool for Space Infrastructure (우주 인프라 영향분석 툴 설계 연구)

  • Jeong, Cheol-Oh;Park, Jae-Woo
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.112-116
    • /
    • 2011
  • Effect analysis tool for space infrastructure has a role to give essential information which is needed to perform research systematically as effect analysis for satellites on earth orbit due to solar burst and statistical analysis for deriving key factor which is occurred anomalies to satellite. And retrieval function which is able to search domestic and foreign research data such as paper, report, journal and book related to satellite anomaly is also included. So this tool will be provided research environment for effect analysis from space environment to space infrastructure of earth orbit satellite. In this paper, it is shown design result for effect analysis for space infrastructure including DB design.