• Title/Summary/Keyword: satellite operation

Search Result 894, Processing Time 0.032 seconds

Development of Operation System for Satellite Laser Ranging on Geochang Station (거창 인공위성 레이저 추적을 위한 운영 시스템 개발)

  • Ki-Pyoung Sung;Hyung-Chul Lim;Man-Soo Choi;Sung-Yeol Yu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.169-183
    • /
    • 2024
  • Korea Astronomy and Space Science Institute (KASI) developed the Geochang satellite laser ranging (SLR) system for the scientific research on the space geodesy as well as for the national space missions including precise orbit determination and space surveillance. The operation system was developed based on the server-client communication structure, which controls the SLR subsystems, provides manual and automatic observation modes based on the observation algorithm, generates the range data between satellites and SLR stations, and carry out the post-processing to remove noises. In this study, we analyzed the requirements of operation system, and presented the development environments, the software structure and the observation algorithm, for the server-client communications. We also obtained laser ranging data for the ground target and the space geodetic satellite, and then analyzed the ranging precision between the Geochang SLR station and the International Laser Ranging Service (ILRS) network stations, in order to verify the operation system.

A Study of Public Test-bed Operation for Satellite Communications via COMS (천리안 위성을 활용한 위성 통신용 공공 테스트베드 운용에 관한 연구)

  • Wang, Do-Huy;Oh, Deock-Gil
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.12-16
    • /
    • 2013
  • This paper we introduce operated public test-bed satellite system configuration for satellite communications and usage for services via COMS(Communication, Ocean and Meteorological Satellite). According to trial public test-bed operation, the broadband multimedia services are expected to be available at the next generation VSAT services due to the increasing of Ka-band utilization. In addition, UHD broadcasting services via satellite is expected to improve the universal accessibility of broadcast services.

DETERMINATION OF USER DISTRIBUTION IMAGE SIZE AND POSITION OF EACH OBSERVATION AREA OF METEOROLOGICAL IMAGER IN COMS

  • Seo, Jeong-Soo;Seo, Seok-Bae;Kim, Eun-Kyou;Jung, Sung-Chul
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.228-231
    • /
    • 2006
  • In this paper, requirements of Meteorological Administration about Meteorological Imager (MI) of Communications, Ocean and Meteorological Satellite (COMS) is analyzed for the design of COMS ground station and according to the analysis results, the distribution image size of each observation area suitable for satellite Field Of View (FOV) stated at the requirements of meteorological administration is determined and the precise satellite FOV and the size of distribution image is calculated on the basis of the image size of the determined observation area. The results in this paper were applied to the detailed design for COMS ground station and also are expected to be used for the future observation scheduling and the scheduling of distribution of user data.

  • PDF

On-board and Ground Autonomous Operation Methods of a Low Earth Orbit Satellite for the Safety Enhancement (저궤도 위성의 안전성 향상을 위한 위성체 및 지상의 자율 운영 방안)

  • Yang, Seung-Eun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.51-57
    • /
    • 2016
  • Many kinds of telemetry should be monitored to check the state of spacecraft and it leads the time consumption. However, it is very important to define the status of satellite in short time because the contact number and time of low earth orbit satellite is limited. Also, on-board fault management should be prepared for non-contact operation because of the sever space environment. In this paper, on-board and ground autonomous operation method for the safety enhancement is described. Immediate fault detection and response is possible in ground by explicit anomaly detection through satellite event and error information. Also, satellite operation assistant system is proposed for ground autonomy that collect event sequence in accordance with related telemetry and recommend or execute an appropriate action for abnormal state. Critical parameter monitoring method with checking rate, mode and threshold is developed for on-board autonomous fault management. If the value exceeds the limit, pre-defined command sequence is executed.

System Operation of the MSC

  • Kim, Young-Soo;Yong, Sang-Soon;Heo, Haeng-Pal;Kong, Jong-Pil;Kim, Young-Sun
    • Bulletin of the Korean Space Science Society
    • /
    • 2002.10a
    • /
    • pp.48.2-48
    • /
    • 2002
  • PDF

An analysis of Electro-Optical Camera (EOC) on KOMPSAT-1 during mission life of 3 years

  • Baek Hyun-Chul;Yong Sang-Soon;Kim Eun-Kyou;Youn Heong-Sik;Choi Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.512-514
    • /
    • 2004
  • The Electro-Optical Camera (EOC) is a high spatial resolution, visible imaging sensor which collects visible image data of the earth's sunlit surface and is the primary payload on KOMPSAT-l. The purpose of the EOC payload is to provide high resolution visible imagery data to support cartography of the Korean Peninsula. The EOC is a push broom-scanned sensor which incorporates a single nadir looking telescope. At the nominal altitude of 685Km with the spacecraft in a nadir pointing attitude, the EOC collects data with a ground sample distance of approximately 6.6 meters and a swath width of around 17Km. The EOC is designed to operate with a duty cycle of up to 2 minutes (contiguous) per orbit over the mission lifetime of 3 years with the functions of programmable gain/offset. The EOC has no pointing mechanism of its own. EOC pointing is accomplished by right and left rolling of the spacecraft, as needed. Under nominal operating conditions, the spacecraft can be rolled to an angle in the range from +/- 15 to 30 degrees to support the collection of stereo data. In this paper, the status of EOC such as temperature, dark calibration, cover operation and thermal control is checked and analyzed by continuously monitored state of health (SOH) data and image data during the mission life of 3 years. The aliveness of EOC and operation continuation beyond mission life is confirmed by the results of the analysis.

  • PDF

A building roof detection method using snake model in high resolution satellite imagery

  • Ye Chul-Soo;Lee Sun-Gu;Kim Yongseung;Paik Hongyul
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.241-244
    • /
    • 2005
  • Many building detection methods mainly rely on line segments extracted from aerial or satellite imagery. Building detection methods based on line segments, however, are difficult to succeed in high resolution satellite imagery such as IKONOS imagery, for most buildings in IKONOS imagery have small size of roofs with low contrast between roof and background. In this paper, we propose an efficient method to extract line segments and group them at the same time. First, edge preserving filtering is applied to the imagery to remove the noise. Second, we segment the imagery by watershed method, which collects the pixels with similar intensities to obtain homogeneous region. The boundaries of homogeneous region are not completely coincident with roof boundaries due to low contrast in the vicinity of the roof boundaries. Finally, to resolve this problem, we set up snake model with segmented region boundaries as initial snake's positions. We used a greedy algorithm to fit a snake to roof boundary. Experimental results show our method can obtain more .correct roof boundary with small size and low contrast from IKONOS imagery. Snake algorithm, building roof detection, watershed segmentation, edge-preserving filtering

  • PDF

Five Reaction Wheel Operation Method for Active SAR Satellite (능동 합성개구레이더위성의 다섯 개 반작용휠 운용방법)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.806-813
    • /
    • 2016
  • For satellite attitude control and maneuver, normally four reaction wheels are used through pyramid configuration. However, if satellite's moment of inertia is large or available reaction wheels' capability is small, we can consider using five reaction wheels. In this case, we should think the arrangement of wheels and their operation method. Active SAR satellite requires high agile maneuver about roll axis to achieve looking angle change. In this research, we study the operation method of five reaction wheels configuration for fast roll maneuver.

OVERVIEW OF COMS GROUND SYSTEM AT METEOROLOGICAL SATELLITE CENTER OF KMA

  • Lee, Hyun-Kyoung;Lee, Bong-Ju;Lee, Yong-Sang;Shim, Jae-Myun;Suh, Ae-Sook;Kim, Hong-Sic;Je, Chang-Eon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.159-162
    • /
    • 2006
  • This paper describes the ground system for COMS (Communication, Ocean, and Meteorological Satellite), the first Korean multi-purposed geostationary satellite, at MSC (Meteorological Satellite Center) in Korea. The overview of COMS MI (Meteorological Imager) will be introduced as well. KMA would implement mission planning for COMS MI operation and receive, process, interpret, disseminate, and archive MI data operationally for domestic and foreign user groups. Major missions of COMS MI are mitigation of natural hazard such as typhoon, dust storm, and heavy rain, and short-term warning of severe weather to protect human health and commerce. Moreover, research of climate variability and long-term changes will be supported. In accordance with those missions, the concept and design of COMPASS (COMS operation and meteorological products application service system), the ground system for COMS MI in MSC, have been setting up since 2004. Currently, COMPASS design is being progressed and will have finished the end of 2006. The development of COMPASS has three phases: first phase is development of fundamental COMPASS components in 2007, second phase is to integrate and test all of the COMPASS components in 2008, and the last phase is to operate COMPASS after COMS In-Orbit Tests in 2009.

  • PDF

KOMPSAT Data Processing System: An Overview and Preliminary Acceptance Test Results

  • Kim, Yong-Seung;Kim, Youn-Soo;Lim, Hyo-Suk;Lee, Dong-Han;Kang, Chi-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.4
    • /
    • pp.357-365
    • /
    • 1999
  • The optical sensors of Electro-Optical Camera (EOC) and Ocean Scanning Multi-spectral Imager (OSMI) aboard the KOrea Multi-Purpose SATellite (KOMPSAT) will be placed in a sun synchronous orbit in late 1999. The EOC and OSMI sensors are expected to produce the land mapping imagery of Korean territory and the ocean color imagery of world oceans, respectively. Utilization of the EOC and OSMI data would encompass the various fields of science and technology such as land mapping, land use and development, flood monitoring, biological oceanography, fishery, and environmental monitoring. Readiness of data support for user community is thus essential to the success of the KOMPSAT program. As a part of testing such readiness prior to the KOMPSAT launch, we have performed the preliminary acceptance test for the KOMPSAT data processing system using the simulated EOC and OSMI data sets. The purpose of this paper is to demonstrate the readiness of the KOMPSAT data processing system, and to help data users understand how the KOMPSAT EOC and OSMI data are processed, archived, and provided. Test results demonstrate that all requirements described in the data processing specification have been met, and that the image integrity is maintained for all products. It is however noted that since the product accuracy is limited by the simulated sensor data, any quantitative assessment of image products can not be made until actual KOMPSAT images will be acquired.