• Title/Summary/Keyword: satellite navigation system (GPS)

Search Result 365, Processing Time 0.022 seconds

LOS Determination Using INS for an Aircraft Mounted Satellite Tracking Antenna (관성측정기를 이용한 항공기용 위성추적 안테나의 지향각 결정)

  • Jung, Ha-Hyoung;Kim, Chung-Il;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • This paper presents a computation method of LOS(Line Of Sight) angle using IMU(Inertial Measurement Unit) for an antenna on aerial vehicle to point to a stationary satellite. In the overall system, the antenna is located at the front of the vehicle, and an IMU is introduced to account for body flexure dynamic. And using the differences between the position and velocity of the IMU based navigation and those of GPS/INS at the vehicle center. Kalman filter is designed to suppress Strapdown INS drift errors.

A Model-Based Multipath Estimation Technique for GPS Receivers (GPS 수신기를 위한 모델 기반 다중경로 신호 추정 기법)

  • Lim, Deok-Won;Choi, Heon-Ho;Heo, Moon-Beom;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.391-399
    • /
    • 2012
  • Multipath remains a dominant source of ranging errors in GNSS (Global Navigation Satellite System). And it is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function. In this paper, therefore, the model of the distorted shape of the correlation function is formulated and a MBME (Model-Based Multipath Estimation) technique for GPS L1/L5 receivers is proposed in order to estimate the parameters of the indirect signal such as the amplitude and the delay. The MBME technique does not require the any hardware modifications and it can estimate the parameters for both the short and long-delay multipath. Especially, it would be the very effective technique for the short-delay multipath if the L5 signal is available. Finally, the feasibility of the proposed technique has been confirmed by simulation results.

Study on Small Vessel′s Pseudo-AIS Interoperable with Universal AIS

  • Park, Jae-Min;Shim, Woo-Seong;Seo, Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • Universal AIS, which has been adopted officially for automatic identification systems among regulated ships by SOLAS, should be installed, for example, on all passenger ships over 300 tons engaged in international voyage and over 500 tons in domestic voyage, sequentially from 2002 to 2004. We must not overlook the fact than-ruled regions by regional authorities in the case of VTS. Actually a major portion of accidents have happened in small vessels like fishing vessels. However, they are not equipped with automatic identification tools, due to the high costs of the equipment for identifying purposes, as well as the absence of regulation In this paper, we researched the alternative of automatic identification for small vessel instead of universal AIS. We analyzed the requirement of automatic identification for small vessel about wireless communication method, traffic volume, etc. We proposed the identification system for small vessels in local areas and developed the Local Vessel Identification System (LVIS) interoperable with universal AIS using a PDA platform and wireless network.

Implementation of Propagation delay estimation model of medium frequency for positioning (측위 적용을 위한 중파의 전파 지연 예측 모델 구현)

  • Yu, Dong-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2009
  • Against Anomaly of GPS, there are several projects of independent satellite navigation systems like Galileo of Europe and QZSS of Japan and modernization of terrestrial navigation system like Loran. In domestic, the need of independent navigation system was proposed and DGPS signal was nominated as the possible substitute. The DGPS signal uses medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to Conductivities and elevations of the irregular terrain. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system. Loran-C uses the ASF estimation method and provides more precise positioning. However there was rarely research on this area in Korea Therefore, we introduce the legacy guaranteed model of additional delay(ASF) and present the results of implementation. With the comparison of the original Monteath results and BALOR results respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS system with the Korean terrain data.

Parameter Estimation for Multipath Error in GPS Dual Frequency Carrier Phase Measurements Using Unscented Kalman Filters

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jae;Kang, Tea-Sam;Jee, Gyu-In;Kim, Jeong-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.388-396
    • /
    • 2007
  • This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.

Analysis on the Initialization Time of Each Mode using OmniSTAR HP (OmniSTAR HP의 측위모드별 수렴시간 분석)

  • Lee, In-Su;Park, Byung-Woon;Song, June-Sol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • In this study, author analyzed the overview and the convergence time of Fixed solutions (<15cm) of OmniSTAR, one of SBAS(Satellite Based Augmentation System) as WADGPS (Wide Area Differential GPS), which can compensate the drawbacks of the existed GNSS (Global Navigation Satellite System) that require the expensive receiver and is impossible to position in case of the radio interference in urban sometimes. As a result, the test shows that the less than 15cm 3D standard deviation converges in 39 minutes at Dynamic mode and 28 minutes at Static mode. It is expected that we can apply OmniSTAR to a variety of fields such as LBS(Location Based Service), mobile positioning, and the geo-spatial information industry that does not necessarily guarantee the high position accuracy.

Design and Applications of a Generalized Software-Based GNSS IF Signal Generator

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.211-215
    • /
    • 2006
  • In this paper, design and applications of a generalized, versatile and customizable IF signal generator that can model the modernized GPS and Galileo signal is given. It generates IF sampled data that can be directly used by a software receiver. Entire constellation of satellites which is independent of satellite-user geometry is easily determined using a real or simulated ephemeris data. Since the IF center frequency, sampling frequency and quantization bit number are user location dependent parameters, their effects are also considered in IF signal generator. The generalized IF signal generator will be very well suited for the development phase of a software receiver due to its versatility. The full access to the sampling frequency, front-end filter definition and ADC parameters also offers a great opportunity for cost-effective analysis of tracking loops and error mitigation techniques at the receiver level. Interference sources can be easily added to the generator to simulate specific environments. This software IF signal generator can also be used to feed a multi-frequency multi-system software receiver for the prototyping of a combined GPS/Galileo receiver. The test result using the generated signals and a real software receiver shows the effectiveness of the implemented IF signal generator.

  • PDF

Acquisition of 3D Spatial Data for Indoor Environment by Integrating Laser Scanner and CCD Sensor with IMU (실내 환경에서의 3차원 공간데이터 취득을 위한 IMU, Laser Scanner, CCD 센서의 통합)

  • Suh, Yong-Cheol;Nagai, Masahiko
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • 3D data are in great demand for pedestrian navigation recently. For pedestrian navigation, we needs to reconstruct 3D model in detail from people's eye. In order to present spatial features in detail for pedestrian navigation, it is indispensable to develop 3D model not only in outdoor environment but also in indoor environment such as underground shopping complex. However, it is very difficult to acquire 3D data efficiently by mobile mapping without GPS. In this research, 3D shape was acquired by Laser scanner, and texture by CCD(Charge Coupled Device) sensor. Continuous changes position and attitude of sensors were measured by IMU(Inertial Measurement Unit). Moreover, IMU was corrected by relative orientation of CCD images without GPS(Global Positioning System). In conclusion, Reliable, quick, and handy method for acquiring 3D data for indoor environment is proposed by a combination of a digital camera and a laser scanner with IMU.

  • PDF

A Study on Pseudolite-augmented Positioning Method for Automatic Docking (자동접안을 위한 의사위성 보강 측위기법에 관한 연구)

  • Park, Sang-Hyun;Cho, Deuk-Jae;Oh, Se-Woong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.10 s.116
    • /
    • pp.839-845
    • /
    • 2006
  • A laser docking system provides a centimeter-level accuracy distance from jetty mounted laser sensors in order to help a vessel to approach to a pier. It is very accurate & useful, whereas there are too many considerable problems. Laser sensors of the laser docking system need to be correctly positioned and installed on a jetty to allow for full range of vessels to be berthed and to consider loading condition and tidal variations. Above all, the laser docking system is expensive and its service coverage is limited. In order to solve these problems, CDGPS positioning method using GPS satellites has been proposed. This paper presents that, through RHDOP simulation, the previous CDGPS positioning method using only GPS satellites is not able to provide the continuous service with centimeter-level positioning accuracy. And this paper proposes a pseudolite-augmented positioning method for vessel docking in order to solve the problem of the continuous service on the previous CDGPS positioning method. In this paper, pseudolite is used to aid in CDGPS positioning. This paper shows that the proposed method can provides the continuous service through comparison analysis of RHDOP simulation results between the GPS satellite constellation and the pseudolite-augmented GPS satellite constellation. Furthermore, it is shown that the proposed positioning method satisfies the positioning performance required for vessel automatic docking at a test bed designed for performance evaluation.

Pseudolite/Ultra-low-cost IMU Integrated Robust Indoor Navigation System Through Real-time Cycle Slip Detection and Compensation

  • Kim, Moon Ki;Kim, O-Jong;Kim, Youn Sil;Jeon, Sang Hoon;No, Hee Kwon;Shin, Beom Ju;Kim, Jung Beom;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.181-194
    • /
    • 2017
  • In recent years, research has been actively conducted on the navigation in an indoor environment where Global Navigation Satellite System signals are unavailable. Among them, a study performed indoor navigation by integrating pseudolite carrier and Inertial Measurement Unit (IMU) sensor. However, in this case, there was no solution for the cycle slip occurring in the carrier. In another study, cycle slip detection and compensation were performed by integrating Global Positioning System (GPS) and IMU in an outdoor environment. However, in an indoor environment, cycle slip occurs more easily and frequently, and thus the occurrence of half cycle slip also increases. Accordingly, cycle slip detection based on 1 cycle unit has limitations. Therefore, in the present study, the aforementioned problems were resolved by performing indoor navigation through the integration of pseudolite and ultra-low-cost IMU embedded in a smartphone and by performing half cycle slip detection and compensation based on this. In addition, it was verified through the actual implementation of real-time navigation.