• Title/Summary/Keyword: satellite launch vehicle

Search Result 219, Processing Time 0.026 seconds

Electromagnetic Test of the GPS Receiver System for a Satellite Launch Vehicle - Part II. Susceptibility Test (위성발사체용 GPS 수신기 시스템의 전자파시험 - Part II. 내성시험)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.338-346
    • /
    • 2007
  • This paper deals with electromagnetic tests of the GPS receiver system that should be developed to satisfy emission and susceptibility requirements for a satellite launch vehicle. The performance of the GPS receiver system against electromagnetic environment that is improved through several tests satisfies all requirements about electromagnetic tests. The susceptibility test results of CS101, CS114, CS115, CS116 and RS103 on MIL-STD-461E are described in Part II.

Development Directions of Succeeding Launch Vehicles of KSLV-II and Outlooks for Technology Advancement (한국형발사체 이후 우리나라의 우주발사체 개발 방향 및 기술 발전 전망)

  • Cho, Sangbum;Lee, Keejoo;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.668-674
    • /
    • 2016
  • In this paper the development directions of the next generation launch vehicle program following KSLV-II has been discussed, which are to be executed after year 2020 according to the Medium and Long Term Plan for National Space Development. Also, several areas of technology advancement have been identified for the successful development of the LVs. The next generation LV must aim for not only the high performance but also for low cost as well as high reliability in order to compete against global commercial launch service providers. To this end, the next generation LVs program shall capitalize on many anticipated accomplishments of the KSLV-II program such as the 75 ton class LOX/kerosene rocket engine.

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification

  • Suk, Byong-Suk;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1465-1469
    • /
    • 2003
  • In general satellite verification process, the AOCS (Attitude & Orbit Control Subsystem) should be verified through several kinds of verification test which can be divided into two major category like FBT (Fixed Bed Test) and polarity test. And each test performed in different levels such as ETB (Electrical Test Bed) and satellite level. The test method of FBT is to simulate satellite dynamics with sensors and actuators supported by necessary environmental models in ETB level. The VDS (Vehicle Dynamic Simulator) try to make the real situation as possible as the on-board processor will undergo after launch. The purpose of FBT test is to verify that attitude control logic function and hardware interface is designed as expected with closed loop simulation. The VDS is one of major equipments for performing FBT and consists of software and hardware parts. The VDS operates in VME environments with target board, several commercial boards and custom boards based on the VxWorks real time operating system. In order to make time synchronization between VDS and satellite on-board processor, high reliable semaphore was implemented to make synchronization with the interrupt signal from on-board processor. In this paper, the real-time operating environment used on VDS equipment is introduced, and the hardware and software configurations of VDS summarized in the systematic point of view. Also, we try to figure out the operational concept of VDS and AOCS verification test method with close-loop simulation.

  • PDF

The Design of Path Length Controller in Ring Laser Gyroscope for Attitude Control in the space launch vehicle (우주발사체 자세제어용 링 레이저 자이로 피에조 구동기 설계)

  • Kim, Eui-Chan;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.31-35
    • /
    • 2010
  • The Ring Laser Gyroscope makes use of the Sagnac effect within a resonant ring cavity of a He-Ne laser and has more accuracy than the other gyros. The space launch vehicle use require the high accuracy Gyro to control and determine the altitude to deliver the satellite in the space. In this paper, The theory of the Path Length Control is explained. The electrical design of Path Length Controller is described. The Design for Path Length Controller is composed of the demodulator, integrator, phase shifter, high voltage amplifier. We apply the circuit to 28cm square ring laser gyro and get the test results.

Acoustic Load Reduction in the Payload of Small Launch Vehicle by using Resonators (공명기를 이용한 소형위성발사체 탑재부의 음향하중 저감)

  • Seo, Sang-Hyeon;Jeong, Ho-Kyeong;Park, Soon-Hong;Jang, Young-Soon;Yi, Yeong-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.234-237
    • /
    • 2007
  • To protect a satellite and electronic equipment from the acoustic load generated by rocket propulsion system, many launch vehicle use acoustic blanket. Acoustic load is main source of random vibration working on the payload. Most high frequency region of the acoustic loads is reduced by payload fairing skins and acoustic blanket, but low frequency region is not. In order to reduce acoustic load of low frequency region, we designed array resonator panel which was made of composite materials. Insertion loss capacity of the payload fairing with acoustic blanket was verified from PLF acoustic test in the acoustic chamber.

  • PDF

PLM System Development for Data Management of KSLV-II Program (한국형발사체개발사업 정보 관리를 위한 PLM 시스템 구축)

  • Kwon, Byung-Chan;Park, Chang-Su;Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • The main purpose of Korea Space Launch Vehicle II(KSLV-II) Program is to develop a domestic launch vehicle that can deliver a 1.5ton class application satellite into a Low Earth Orbit(600~800km). The data management is an essential factor in systems engineering for success of large-scale complex systems development, and it systematically manages the information and technical data for the total life-cycle of a system. In this paper, data management policies and processes on KSLV-II program are presented, and product life-cycle management system for KSLV-II program is also presented.

Vibration Analysis of a Nanosatellite for Microgravity Science Missions (마이크로중력 과학 임무 수행용 초소형 위성의 진동 해석)

  • Kim, Jin-Hyuk;Jang, Jung-Ik;Park, Seul-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.104-110
    • /
    • 2019
  • A nanosatellite designed by the Korea Microgravity Science Laboratory (KMSL) is currently under development. The KMSL nanosatellite is designed to perform two different scientific missions in space. To successfully complete missions, a variety of tests must be conducted to verify the performance of the designed satellite before launch. As part of the qualification test campaign, the KMSL nanosatellite underwent high level vibrational tests (to comply with Falcon 9 qualification level) to demonstrate the integrity of the system. The purpose of this study is to demonstrate that the primary structure and all electronic and mechanical components can withstand the vibrations and the loads experienced during the launch period. To this end, the KMSL nanosatellite was exposed to static and dynamic loads and various types of vibrations that are inevitably produced during the space vehicle launch period. The vibration test results clearly demonstrated that all avionics and mechanical components can withstand the vibrations and the loads applied to the KMSL nanosatellite's body through a Pico-satellite Orbital Deployer (POD).

Mechanical System Design and Development of the HAUSAT-1 Picosatellite (초소형위성 HAUSAT-1의 기계시스템 설계 및 개발)

  • Hwang, Ki-Lyong;Min, Myung-Il;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.103-113
    • /
    • 2004
  • The satellite is exposed to the severe vibration environments such as random vibration environments such as random vibration, acceleration, shock, and acoustics during launch ascent and transportation. It is also faced with various space environments such as thermal vacuum, radiation and microgravity during the mission life. The satellite should be designed, manufactured, assembled and tested to be able to endure in these harsh environments. This paper addresses the results of the structural and thermal design and analyses for the HAUSAT-1 picosatellite which is scheduled to launch in the first quarter of 2005 by Russian launch vehicle "Dnepr". The qualification vibration and thermal vacuum tests have been conducted and passed at the satellite level to ensure that the HAUSAT-1 mechanical system was designed to be stable with enough margin.

Planning of Integrated Test for Propulsion System of Space Launch Vehicle (우주 발사체 추진기관 종합 시험 계획 수립)

  • Cho, Sang-Yeon;Kim, Sang-Heon;Bershadesky, V.;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.89-95
    • /
    • 2011
  • Korea Space Launch Vehicle II (KSLV-II) planned to launch in 2021 is 3 stage rocket which can inject 1.5 ton satellite in low earth orbit. KSLV-II will adapt the newly developed liquid rocket engines for its propulsion system of each stage. For the evaluation of development level for rocket engine, integrated system test performed in appropriate facility is needed. In this study, test article and major parameters for certifying the propulsion system of KSLV-II were reviewed and optimum test cycle and test duration for satisfying system reliability requirement were illustrated.

Design Process of Liquid-Propellant Propulsion System for Space Launch Vehicle (우주발사체용 액체추진시스템 설계 프로세스)

  • Kim Hui-Tae;Han Sang-Yeop;Lee Han-Ju;Cho Kie-Joo;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.147-150
    • /
    • 2005
  • Space launch vehicles mainly use the liquid-propellant propulsion system which has easy thrust control ability and high specific impulse for that the payload like satellite and spacecraft should be entered into exact orbit. However, the liquid-propellant propulsion system is very difficult to develop because it is more complicate than the solid rocket propulsion system and demands very high technology. In space launch vehicle developing procedure the system design level is very important thing to reduce cost, shorten schedule, and improve the performance. The system design process was introduced for selecting the best liquid-propellant propulsion system on this paper.

  • PDF