• Title/Summary/Keyword: satellite dynamics

Search Result 193, Processing Time 0.026 seconds

Relativistic Radiation Belt Electron Responses to GEM Magnetic Storms: Comparison of CRRES Observations with 3-D VERB Simulations

  • Kim, Kyung-Chan;Shprits, Yuri;Subbotin, Dmitriy;Ni, Binbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2012
  • Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch-angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch-angle scattering by plasmaspheric hiss inside the plasmasphere. We provide a detailed description of simulations for each of the GEM storm events.

  • PDF

Development of UAV Teleoperation Virtual Environment Based-on GSM Networks and Real Weather Effects

  • AbdElHamid, Amr;Zong, Peng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-474
    • /
    • 2015
  • Future Ground Control Stations (GCSs) for Unmanned Aerial Vehicles (UAVs) teleoperation targets better situational awareness by providing extra motion cues to stimulate the vestibular system. This paper proposes a new virtual environment for long range Unmanned Aerial Vehicle (UAV) control via Non-Line-of-Sight (NLoS) communications, which is based on motion platforms. It generates motion cues for the teleoperator for extra sensory stimulation to enhance the guidance performance. The proposed environment employs the distributed component simulation over GSM network as a simulation platform. GSM communications are utilized as a multi-hop communication network, which is similar to global satellite communications. It considers a UAV mathematical model and wind turbulence effects to simulate a realistic UAV dynamics. Moreover, the proposed virtual environment simulates a Multiple Axis Rotating Device (MARD) as Human Machine Interface (HMI) device to provide a complete delay analysis. The demonstrated measurements cover Graphical User Interface (GUI) capabilities, NLoS GSM communications delay, MARD performance, and different software workload. The proposed virtual environment succeeded to provide visual and vestibular feedbacks for teleoperators via GSM networks. The overall system performance is acceptable relative to other Line-of-Sight (LoS) systems, which promises a good potential for future long range, medium altitude UAV teleoperation researches.

Carrier Tracking Loop Design Using FLL-assisted PLL Scheme for Galileo L1F Channel (갈릴레오 L1F 채널에서 FLL-assisted PLL 기술을 이용한 반송파 추적 설계)

  • Choi, Seung-Duk;Lee, Sang-Kook;Hawng, In-Kwan;Shin, Cheon-Sig;Lee, Sang-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1217-1224
    • /
    • 2008
  • The carrier tracking has to be basically completed for accurate positioning of Galileo satellite system. The FLL for tracking frequency errors is robust to dynamic stress causing changes of propagation time but hardly tracks accurate carrier tracking. The PLL for tracking phase errors provides accurate carrier tracking but is sensitive to dynamic stress and its tracking performance is decreased when high dynamics exist. In this paper, we design the carrier tracking loop with the FLL-assisted PLL loop filter and co-operations of FLL and PLL to achieve accurate carrier tracking in high dynamic stress. we prove the performance of designed carrier tracking loop via simulations.

A Review of the Quality Control of Global Ocean Temperature and Salinity Data (전지구 수온 및 염분 자료 품질 관리에 관한 논의)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.554-566
    • /
    • 2012
  • High-density temperature and salinity profiles from the successful international Argo project made it possible to reproduce the three-dimensional global ocean state in near-real time, which also increased much attention on the data analysis studies of global ocean. This paper reviewed several important issues on the recent data analysis studies such as systematic biases of XBT (eXpendable BathyThermograph) and Argo data, sea level budget discrepancy between steric height and satellite observed data, heat content change, and the current status of the development of objective analysis fields. This study also emphasized that it is required to carry out very cautious ocean data quality control and understand global-scale ocean variability prior to analyzing the regional-scale ocean climate change, particularly, in the East Asian marginal Seas.

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor (Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구)

  • Ramadan, Zaher;Jung, Jongwan;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF

Prediction of Pressure Fluctuations on Hammerhead Vehicle at Transonic Speeds Using CFD and Semi-empirical Formula Considering Spatial Distribution (CFD와 공간분포를 고려한 반경험식을 이용한 해머헤드 발사체의 천음속 압력섭동 예측)

  • Kim, Younghwa;Nam, Hyunjae;Kim, June Mo;Sun, Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.457-464
    • /
    • 2021
  • To analyze the buffet phenomenon that causes serious vibration loads on a satellite launch vehicle, the pressure fluctuations on a hammerhead launch vehicle at transonic speeds are predicted by coupling CFD analysis and semi-empirical methods. From the RANS simulation, shock oscillation region, separation region, and separation reattachment region are identified, and the boundary layer thickness, the displacement thickness, and flow properties at boundary layer edge are calculated. The pressure fluctuations and power spectra on the hammerhead fairing are predicted by coupling RANS results and semi-empirical methods considering spatial distribution, and compared with the experimental data.

Pasture Vegetation Changes in Mongolia

  • Erdenetuya, M.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.105-106
    • /
    • 2004
  • The NDVI(normalized difference vegetation index) dataset is unique or main tool to assess the global, multi seasonal, multi annual, and multi spectral changes over the World. These features are useful for environmental studies in particular, for the vegetation coverage monitoring of the country as Mongolia, where are large pastureland and pastoral animal husbandry, which dependent on natural conditions. Pasture vegetation cover is changing accordingly with both of global climate change and anthropogenic effect or human impacts. Using past 20 years (1982-2001) NDVI derived from NOAA satellite, its dynamical trend has been decreased in all natural zones differently. Also applied the method named "Two Years Differences" which could calculate the number of years with increased or decreased NDVI values at the same place. From May to September have occurred the 9 years maximum decreases of NDVI over Mongolia, but it obtained differently in spatial and temporal scale. In 24.4 ? 32.7% of all territory occurred one year decrease of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI. According to the linear trend of NDVI and in 18% occurred more than 3 years frequent decrease of NDVI dynamics over 69% of whole territory of Mongolia NDVI values had been decreased due to both natural and human induced impacts to the pasture condition. In this paper also included some results of the integrated analyses of NOAA/NDVI and ground truth data over Monglia separately by natural zones.

  • PDF

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Monitoring of the Suspended Sediments Concentration in Gyeonggi-bay Using COMS/GOCI and Landsat ETM+ Images (COMS/GOCI 및 Landsat ETM+ 영상을 활용한 경기만 지역의 부유퇴적물 농 도 변화 모니터링)

  • Eom, Jinah;Lee, Yoon-Kyung;Choi, Jong-Kuk;Moon, Jeong-Eon;Ryu, Joo-Hyung;Won, Joong-Sun
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • In coastal region, estuaries have complex environments where dissolved and particulate matters are mixed with marine water and substances. Suspended sediment (SS) dynamics in coastal water, in particular, plays a major role in erosion/deposition processes, biomass primary production and the transport of nutrients, micropollutants, heavy metals, etc. Temporal variation in suspended sediment concentration (SSC) can be used to explain erosion/sedimentation patterns within coastal zones. Remotely sensed data can be an efficient tool for mapping SS in coastal waters. In this study, we analyzed the variation in SSC in coastal water using the Geostationary Ocean Color Imager (GOCI) and Landsat Enhanced Thematic Mapper Plus (ETM+) in Gyeonggi-bay. Daily variations in GOCI-derived SSC showed low values during ebb time. Current velocity and water level at 9 and 10 am is 37.6, 28.65 $cm{\cdot}s^{-1}$ and -1.23, -0.61 m respectively. Water level has increased to 1.18 m at flood time. In other words, strong current velocity and increased water level affected high SSC value before flood time but SSC decreased after flood time. Also, we compared seasonal SSC with the river discharge from the Han River and the Imjin River. In summer season, river discharge showed high amount, when SSC had high value near the inland. At this time SSC in open sea had low value. In contrast, river discharge amount from inland showed low value in winter season and, consequently, SSC in the open sea had high value because of northwest monsoon.