• Title/Summary/Keyword: satellite data processing

Search Result 580, Processing Time 0.025 seconds

A Study on the Fusion of DEM Generated from Images of Optical Satellite and SAR (광학 위성영상과 SAR 위성영상의 DEM 융합에 관한 연구)

  • Yeu, Bock-Mo;Hong, Jae-Min;Jin, Kyeong-Hyeok;Yoon, Chang-Rak
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.58-65
    • /
    • 2002
  • The most widespread techniques for DEM generation are stereoscopy for optical sensor images and interfereometry for SAR images. These techniques suffer from certain sensor and processing limitations, which can be overcome by the synergetic use of both sensors and DEMs respectively. In this paper, different strategies for fusing SAR and optical data are combined to derive high quality DEM products. The multiresolution wavelet transform, which take advantage of the complementary properties of SAR and stereo optical DEMs, will be applied for the fusion process. By taking advantage of the fact that errors of the DEMs are of different nature using the multiresolution wavelet transform, affected part are filtered and replaced by those of the counterpart and is tested with two sets of SPOT and ERS DEM, resulting in a remarkable improvement in DEM. For the analysis of results, the reference DEM is generated from digital base map(1:5000).

  • PDF

H-IMA : IMA based Hybrid Platform Architecture for Improving Portability of Flight Software (H-IMA : 비행 소프트웨어의 이식성 향상을 위한 IMA 기반의 혼합형 플랫폼 아키텍처)

  • Seo, Yongjin;Yun, Sangpil;Joe, Hyunwoo;Kwon, Cheolsoon;Kim, Hyungshin;Kim, Hyeon Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 2014
  • Flight software operated on the on-board computers in the satellite has requirements such as real-time and high reliability. These requirements make dependency between the flight software and operating environments. Further, whenever a new system is built, such problem drives that all flight software are redeveloped. Thus, the dependency between them should be removed. And the work can be achieved by improving the portability of the flight software. In this paper, we propose a platform architecture based on the IMA architecture. The platform architecture is a hybrid one built by blending two kinds of realizations of the IMA architecture in order to maximize portability. In addition, we implement a prototype system and analyze the execution results of the system to justify the proposed architecture. The proposed architecture enables us to remove the dependency between fight software and operating environments.

Analysis Distribution and Feature of Lunar Gravity Field Using SGM90d Model (SGM90d모델을 이용한 달 중력장 분포 및 특징 분석)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.129-138
    • /
    • 2009
  • The lunar gravity field is an important source to understand the lunar interior structure, dichotomy and magma ocean of the moon, furthermore it can be used to study the origin and evolution history of the moon. In this paper, we firstly investigated the history of lunar exploration were performed for determining the lunar gravity field, in addition to investigating the procedure of progress related with the lunar gravity field model and gravity observations techniques. After, we determined practically the gravity anomalies of the moon using the new lunar gravity model, SGM90d (SELENE Gravity Model), which were developed by processing the tracking data from SELENE, the japanese lunar mission. Finally, we compared the lunar gravity anomalies from SGM90d model to the those from existing lunar gravity model (LP165P). As results from the comparison, we can make a sense that 4-way Doppler observations of SELENE is very effective to measure the gravity field on the farside of the moon. The precise lunar gravity field model including the farside of the moon which can be more helpful to understand the dichotomy of moon and to establish the detailed distribution of lunar gravity field, such as a mascon.

Visualization of 3D Terrain Information on Smartphone using HTML5 WebGL (HTML5 WebGL을 이용한 스마트폰 3차원 지형정보 시각화)

  • Kim, Kwang-Seob;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.245-253
    • /
    • 2012
  • The public and civilian demands regarding 3D geo-spatial information processing on mobile device including smartphone are increasing. But there are few actual implementations or application cases. This work is to present some results by a prototype implementation of 3D terrain information visualization function with satellite image and DEM using HTML5 WebGL, which is a web-based graphic library under the standardization process. This is a useful standard for cross-platform operation for 3D graphic rendering without other plug-in modules. As the results, in the different types of operating system or browser in a personal computer or a smartphone, it shows same rendering results, as long as they support HTML5 WebGL. As well;geo-metadata search and identification functions for data sets for 3D terrain visualization process are added in this implementation for the practical aspect.

Development of Unwrapped InSAR Phase to Height Conversion Algorithm (레이더 간섭위상의 정밀고도변환 알고리즘 개선)

  • Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.227-235
    • /
    • 2012
  • The InSAR (Interferometric SAR) processing steps for DEM generation consist of the coregistration of two SAR data, interferogram generation, phase filtering, phase unwrapping, phase to height conversion, and geocoding, etc. In this study, we developed the precise algorithm for phase to height conversion, including the ambiguity method taking into account Earth ellipsoid, Schw$\ddot{a}$visch method, and the refined ambiguity method suitable for the interferometric pair with non-parallel obit. From the testing with JERS-1 orbit we found that the height error by traditional ambiguity method reaches to about 40 m during phase to height conversion. The proposed methods are very useful in generating precise InSAR DEM;especially in the case of using non-parallel InSAR pair due to unstable orbit control such as JERS-1 or intentional orbit control such as Cross-InSAR pair between ERS2 and ENVISAT satellite.

Ocean Fog Detection Alarm System for Safe Ship Navigation (선박 안전항해를 위한 해무감지 경보 시스템)

  • Lee, Chang-young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.485-490
    • /
    • 2020
  • Recently, amid active research on domestic shipbuilding industry and IT convergence technology, with the development of satellite detection technology for ship safety operation, ships monitored the movement of ships with the mandatory long-range identification & tracking of vessels and automatic identification system. It is possible to help safe navigation, but it is necessary to develop safety device that alert the marine officer who rely on radar to correct conditions in case of weightlessness. Therefore, an ocean fog alarm system was developed to detect and inform using photo sensors. The fabricated ocean fog detect and alarm system consists of a small, low-power optical sensor transceiver and data sensing processing module. Through experiment, it is confirmed that the fabricated ocean fog detect and alarm system measure the corresponding concentration of ocean fog for fogless circumstance and fogbound circumstance, respectively. Furthermore, the fabricated system can control RPM of ship engine according to the concentration of ocean fog, and consequently, the fabricated system can be applied to assistant device for ship safety operation.

Mapping Man-Made Levee Line Using LiDAR Data and Aerial Orthoimage (라이다 데이터와 항공 정사영상을 활용한 인공 제방선 지도화)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Chung, Youn-In;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.84-93
    • /
    • 2011
  • Levee line mapping is critical to the protection of environments in river zones, the prevention of river flood and the development of river zones. Use of the remote sensing data such as LiDAR and aerial orthoimage is efficient for river mapping due to their accessibility and higher accuracy in horizontal and vertical direction. Airborne laser scanning (LiDAR) has been used for river zone mapping due to its ability to penetrate shallow water and its high vertical accuracy. Use of image source is also efficient for extraction of features by analysis of its image source. Therefore, aerial orthoimage also have been used for river zone mapping tasks due to its image source and its higher accuracy in horizontal direction. Due to these advantages, in this paper, research on three dimensional levee line mapping is implemented using LiDAR and aerial orthoimage separately. Accuracy measurement is implemented for both extracted lines generated by each data using the ground truths and statistical comparison is implemented between two measurement results. Statistical results show that the generated 3D levee line using LiDAR data has higher accuracy than the generated 3D levee line using aerial orthoimage in horizontal direction and vertical direction.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Spectral Characteristics of Sea Surface Height in the East Sea from Topex/Poseidon Altimeter Data (Topex/Poseidon에서 관측된 동해 해수면의 주기특성 연구)

  • 황종선;민경덕;이준우;원중선;김정우
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.375-383
    • /
    • 2001
  • We extracted sea surface heights(SSH) from the TopexJPoseidon(T/P) radar altimeter data to compare with fhe SSH estimated from in-situ lide gauges(T/G) at Ulleungdo, Pohang, and SockcholMucko sites. Selection criteria such as wet/dry troposphere, ionosphere, and ocean tide were used to estimate accurate SSH. For time series analysis, the one-hour interval tide gauge SSHs were resampled al lO-day interval of the satellite SSHs. The ocean tide model applied in the altimeter data processing showed periodic aliasings of 175.5 day, 87.8 day, 62J day, 58.5 day, 49.5 day and 46.0 day, and, hence, the ZOO-day filtering was applied to reduce these spectral noises. Wavenumber correlation analysis was also applied to extract common components between the two SSHs, resulting in enhancing the correlation coefficient(CC) dramatically. The original CCs between the satenite and tide gauge SSHs are 0.46. 0.26, and 0.]5, respectively. Ulleungdo shows the largest cc bec;luase the site is far from the coast resulting in the minimun error in the satellite observations. The CCs were then increased to 0.59, 030, and 0.30, respectively, after 200.day filtering, and to 0.69, 0.63. and 0.59 after removing inversely correlative components using wavenumber correlation analysis. The CCs were greatly increased by 87, 227, and 460% when the wavenumber correlation analysis was followed by 2oo-day filtering, resulting in the final CCs of 0.86, 0.85, 0.84, respectively. It was found that the best SSHs were estimated when the two methods were applied to the original data. The low-pass filtered TIP SSHs were found to be well correlated with the TIG SSHs from tide gauges, and the best correlation results were found when we applied both low-pass filtering and spectral correlation analysis to the original SSHs.

  • PDF