• 제목/요약/키워드: satellite based augmentation system (SBAS)

검색결과 69건 처리시간 0.025초

C1P1 DCB를 추정하는 광역보강항법 시스템 (Wide Area Augmentation System Estimating C1P1 DCB)

  • 부성춘;소형민;김갑진;이철수;김도경;고요한
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.400-408
    • /
    • 2018
  • 광역보강항법 시스템은 광역 지역에서 사용할 수 있는 보정 데이터(이온층 지연, 위성 및 시계 오차) 및 무결성 정보를 생성하여 전송하는 시스템으로 대표적으로 위성기반 보강항법 시스템인 SBAS가 있다. 미국에서는 WAAS라는 명칭으로 운용하고 있고 유럽에서는 EGNOS, 일본에서는 MSAS, 러시아는 SDCM, 인도는 GAGAN이라는 명칭으로 광역보강항법 시스템을 운용 하고 있다. 한국에서도 KASS명칭으로 2022년 목표로 개발을 진행하고 있다. SBAS 시스템은 국제민간항공기구 ICAO에서 국제 표준으로 정한 시스템으로 민간 서비스를 위해 운영된다. 따라서 보정 데이터도 민간 SPS 수신기용으로만 사용되고 있다. 본 논문에서는 SPS용 보정항법 시스템을 PPS 수신기에 사용하기 위해 필요한 C1P1 DCB 추정 방법에 대해 논의한다. 추정된 C1P1 DCB 결과를 바탕으로 단일 위성항법에서의 C1P1 DCB영향을 분석 후 SPS용 차분위성항법 시스템을 PPS 수신기에 적용한 결과를 분석하였다. 마지막으로 SPS용 광역보강항법 시스템을 PPS 수신기에 적용하여 결과를 분석하였다.

A Study of SBAS Position Domain Analysis Method: WAAS and EGNOS Performance Evaluation

  • Kim, Dong-Uk;Han, Deok-Hwa;Kim, Jung-Beom;Kim, Hwi-Gyeom;Kee, Chang-Don;Choi, Kwang-Sik;Choi, Heon-Ho;Lee, Eun-Sung
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권4호
    • /
    • pp.203-211
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) is a system that provides positioning information with high and accurate reliability to users who require ensuring high safety such as airplane taking off and landing. A continuous performance evaluation on navigation safety facilities shall be performed to determine whether developed systems meet the required performance before and after the operation. In this paper, SBAS position domain analysis is discussed in relation to analysis items for performance evaluation. The performance evaluation on the SBAS in the position domain shall conduct analysis on accuracy, integrity, continuity, and availability, which are items in the required navigation performance (RNP). In the paper, position domain analysis was conducted with regard to the Wide Area Augmentation System (WAAS) in the USA and the European Geostationary Navigation Overlay Service (EGNOS), which were developed already and now under operation. The analysis result showed that each of the systems satisfied the APV-I performance requirements recommended by the International Civil Aviation Organization (ICAO) with regard to daily data. It is necessary to verify using long-term data, whether the performance requirements in the RNP items are satisfied for system certification.

Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석 (Performance Assessment of GBAS Ephemeris Monitor for Wide Faults)

  • 송준솔
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

WAAS-EGNOS 중첩 영역 내 위성기반 보강시스템 선택 기법 연구 (Selection Methods of Multi-Constellation SBAS in WAAS-EGNOS Overlap Region)

  • 김민규;김정래
    • 한국항행학회논문지
    • /
    • 제23권3호
    • /
    • pp.237-244
    • /
    • 2019
  • SBAS는 실시간으로 사용자에게 GNSS 궤도 및 시계, 전리층 보정정보와 이에 대한 무결성정보를 제공하여 SBAS 사용 시 정밀한 위치추정이 가능하다. 각 국의 SBAS 개발 및 추가 지상관측소 설치로 SBAS 서비스 영역이 확대됨에 따라 2개의 SBAS 서비스 영역이 겹쳐 다중 SBAS 신호가 수신되는 영역이 존재하는데, 이에 대한 신호 선택 방법에 관한 연구는 진행되지 않았다. 이에 본 연구에서는 WAAS와 EGNOS 정보가 동시에 전송되는 영역에서 WAAS 정보 우선 사용 방법, EGNOS 정보 우선 사용 방법, 그리고 보정정보 오차 공분산 비교 선택 방법을 사용하여 저궤도위성에 SBAS 정보를 적용한 후 위치추정 결과를 비교하였다. WAAS 정보를 우선으로 사용할 때 3D 위치오차는 2.57 m로 가장 작았으며, 오차 공분산 비교 방법을 사용했을 경우에는 WAAS와 EGNOS의 관측소와 가장 먼 중첩 영역 중심에서 위치추정 정확도가 가장 높았다. EGNOS 정보를 우선 사용 시 중첩 영역의 EGNOS와 가까운 동쪽 지역에서 WAAS 우선 사용 방법보다 위치오차가 8% 더 작았다.

위성기반 보강시스템 기준국 후보지의 환경 분석 (An Environmental Analysis of Candidate SBAS Reference Station)

  • 한영훈;박슬기;이상헌;박상현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.685-688
    • /
    • 2016
  • 위성기반 보강시스템은 위성항법시스템 사용자의 측위 정확도를 향상 시킬 수 있는 보정정보를 위성을 이용하여 방송하는 시스템으로, 특히 항행분야에서 많이 활용되고 있다. 위성기반 보강시스템을 항행분야에서 활용하기 위해서는 정확성뿐만 아니라 무결성, 지속성, 가용성, 서비스 영역 등의 요구사항을 만족해야한다. 기준국은 보정정보 생성을 위한 측정치를 수집하는 기반 시스템으로서, 기준국의 환경, 위치, 분포 등은 위성기반 보강시스템의 성능을 결정하는 중요한 요소이다. 따라서 위성기반 보강시스템의 기준국 선정을 위해서는 사이트 조사를 통한 환경 분석이 필수적이다. 본 논문에서는 우리나라 해양수산부에서 운영 중인 NDGPS 기준국을 위성기반 보강시스템의 기준국으로 공동 활용한다는 전제하에 NDGPS 기준국 사이트 중 일부의 환경 분석을 수행한다. 기준국 환경 분석은 GPS 위성의 가시성과 전파환경에 대하여 분석하며, 이로부터 기준국 사이트 조사를 위한 간략한 절차와 요구사항을 제시한다.

  • PDF

우리나라 전공역 위성항법 보강시스템 구현 방안 연구 (A Study on the Implementation Scenarios of GNSS Augmentation System for Korean Airspace)

  • 배중원;김동민;지규인
    • 한국항행학회논문지
    • /
    • 제12권6호
    • /
    • pp.567-573
    • /
    • 2008
  • 본 논문에서는 우리나라 항공용 위성항법 보강시스템의 구축 방안에 대해 ICAO기준을 만족하는 전공역 위성항법 보강시스템 성능기준을 바탕으로 정량화하여 검토하였다. 국제적 동향으로부터 구축예상시점에서의 추세변화를 예측하고, 우선적으로 우리나라 여건에 적합한 구축 시나리오를 설정하여 가용성(Availability)에 대한 성능분석을 수행하였다. 국내 구축 시나리오로는 GBAS의 경우 국내 모든 공항에 구축하고, SBAS와 GRAS의 경우 5개 지역의 기준국과 2개의 중앙처리국이 필요함을 알 수 있었다. 추가적으로 SBAS의 경우는 2개의 지상 송신국(Uplink Station)과 2개의 정지위성이 소요되고, GRAS의 경우는 15개의 VDB가 소요되는 것으로 분석되었다. 전공역에 대한 각 보강시스템들에 대한 우리나라에서의 기용성 분석결과를 제시하였으며, 위성항법기술의 발전추세를 종합적으로 고려하더라도, SBAS와 GRAS의 경우는 CAT-I 수준 이상의 가용성을 보장하지 못할 것으로 판단되는 반면, ABAS의 성능은 지속적으로 개량되어 나갈 것이 확실시 되므로 대형기 중심의 우리나라 상황에서의 항공항법용 보강시스템으로서는 ABAS와 GBAS만으로 충분할 것으로 평가되었다.

  • PDF

Virtual Ground Based Augmentation System

  • Core, Giuseppe Del;Gaglione, Salvatore;Vultaggio, Mario;Pacifico, Armando
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.33-37
    • /
    • 2006
  • Since 1993, the civil aviation community through RTCA (Radio Technical Commission for Aeronautics) and the ICAO (International Civil Air Navigation Organization) have been working on the definition of GNSS augmentation systems that will provide improved levels of accuracy and integrity. These augmentation systems have been classified into three distinct groups: Aircraft Based Augmentation Systems (ABAS), Space Based Augmentation Systems (SBAS) and Ground Based Augmentation Systems (GBAS). The last one is an implemented system to support Air Navigation in CAT-I approaching operation. It consists of three primary subsystems: the GNSS Satellite subsystem that produces the ranging signals and navigation messages; the GBAS ground subsystem, which uses two or more GNSS receivers. It collects pseudo ranges for all GNSS satellites in view and computes and broadcasts differential corrections and integrity-related information; the Aircraft subsystem. Within the area of coverage of the ground station, aircraft subsystems may use the broadcast corrections to compute their own measurements in line with the differential principle. After selection of the desired FAS for the landing runway, the differentially corrected position is used to generate navigation guidance signals. Those are lateral and vertical deviations as well as distance to the threshold crossing point of the selected FAS and integrity flags. The Department of Applied Science in Naples has create for its study a virtual GBAS Ground station. Starting from three GPS double frequency receivers, we collect data of 24h measures session and in post processing we generate the GC (GBAS Correction). For this goal we use the software Pegasus V4.1 developed from EUROCONTROL. Generating the GC we have the possibility to study and monitor GBAS performance and integrity starting from a virtual functional architecture. The latter allows us to collect data without the necessity to found us authorization for the access to restricted area in airport where there is one GBAS installation.

  • PDF

국내 지역에서의 DGPS와 SBAS 성능 비교 분석 (Comparative Analysis of Performance for DGPS and SBAS in Korea Region)

  • 임철순;박병운
    • 한국항행학회논문지
    • /
    • 제21권3호
    • /
    • pp.279-286
    • /
    • 2017
  • 2001년 국제해사기구(IMO)는 IMO 결의안 A.915(22)를 통해 미래 해양항법을 위한 성능 요구조건을 규정하였다. 현재 DGPS 서비스를 제공 중인 다수의 DGPS 시스템은 IMO 결의안 A.915(22)에서 규정한 성능요구조건을 충족하지 못한다. 이러한 요구성능 증가에 대처하고 안전한 측위서비스 제공을 위한 DGPS 대체 및 보완 기술 중 하나로 SBAS의 활용이 고려되고 있다. 특히, 기존에 설치된 DGPS 기준국을 재정비하기 위해서는 매우 많은 예산이 소요되므로, SBAS 메시지를 활용하여 보정정보를 생성하여 전송하는 방법이 제안된 바 있다. 본 논문에서는 해양 사용자에 대해서 해양수산부 국립해양측위정보원에서 운영하고 있는 NDGPS와 일본의 MSAS의 성능을 비교분석 하였다. 또한, DGNSS 시스템의 보완 및 대체 시스템으로써 SBAS가 IMO 결의안 A.915(22)에서 규정한 요구조건을 충족하는지 검증하였다.

Ionospheric Storm and Spatial Gradient Analysis for GBAS

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Young-Jae;Jun, Hyang-Sig;Nam, Gi-Wook
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.361-365
    • /
    • 2006
  • High ionospheric spatial gradient during ionospheric storm is most concern for the landing approach with GNSS (Global Navigation Satellite System) augmentation systems. In case of the GBAS (Ground-Based Augmentation System), the ionospheric storm causes sudden increase of the ionospheric delay difference between a ground facility and a user (aircraft), and the aircraft position error increases significantly. Since the ionosphere behavior and the storm effect depend on geographic location, understanding the ionospheric storm behavior at specific regional area is crucial for the GNSS augmentation system development and implementation. Korea Aerospace Research Institute and collaborating universities have been developing an integrity monitoring test bed for GBAS research and for future regional augmentation system development. By using the dense GPS (Global Positioning System) networks in Korea, a regional ionosphere map is constructed for finding detailed aspect of the ionosphere variation. Preliminary analysis on the ionospheric gradient variation during a recent storm period is performed and the results are discussed.

  • PDF