• Title/Summary/Keyword: satellite Imagery

Search Result 933, Processing Time 0.032 seconds

Regional Structure and Locational Characteristics of Najin-Seonbong Economic and Trade Zone (나진-선봉 경제 무역 지대의 입지특성과 지역구조)

  • Lee, Ki-Suk;Lee, Ock-Hee;Choe, Han-Sung;Ahn, Jae-Seob;Nan, Ying
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.4
    • /
    • pp.293-316
    • /
    • 2002
  • This study aims to identify changes that have occurred in the regional structure and locational characteristics of the Najin-Seonbong Economic and Trade Zone established in North Korea in 1991. In order to analyze land use patterns as variables of change in the regional structure, an field trip data, satellite imagery and other materials about the region are examined. In terms of its location as a major regional transit hub, the Najin-seonbong Economic and Trade Zone has not been supported by the required infrastructural developments and the establishment of the export processing zones has exposed the lack of vital links with local networks and industry. Thus, despite the fact that the local government has made a lot of effort in attracting foreign investment over the past decade, little progress has been made and the region has not changed. By and large, its operational efficiency and potential for development as a major export processing zone has been relatively limited. In the long w, prospects for the region's emergence as a major economic player will depend on the North Korean Govemment's policy in tackling the various infrastructural deficiencies.

Application of Remote Sensing and Geographic Information System in Forest Sector (원격탐사와 지리정보시스템의 산림분야 활용)

  • Lee, Woo-Kyun;Kim, Moonil;Song, Cholho;Lee, Sle-gee;Cha, Sungeun;Kim, GangSun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.27-42
    • /
    • 2016
  • Forest accounts for almost 64 percents of total land cover in South Korea. For inventorying, monitoring, and managing such large area of forest, application of remote sensing and geographic information system (RS/GIS) technology is essential. On the basis of spectral characteristics of satellite imagery, forest cover and tree species can be classified, and forest cover map can be prepared. Using three dimensional data of LiDAR(Light Detection and Ranging), tree location and tree height can be measured, and biomass and carbon stocks can be also estimated. In addition, many indices can be extracted using reflection characteristics of land cover. For example, the level of vegetation vitality and forest degradation can be analyzed with VI (vegetation Index) and TGSI (Top Grain Soil Index), respectively. Also, pine wilt disease and o ak w ilt d isease c an b e e arly detected and controled through understanding of change in vegetation indices. RS and GIS take an important role in assessing carbon storage in climate change related projects such as A/R CDM, REDD+ as well. In the field of climate change adaptation, impact and vulnerability can be spatio-temporally assessed for national and local level with the help of spatio-temporal data of GIS. Forest growth, tree mortality, land slide, forest fire can be spatio-temporally estimated using the models in which spatio-temporal data of GIS are added as influence variables.

Analysis on Topographic Normalization Methods for 2019 Gangneung-East Sea Wildfire Area Using PlanetScope Imagery (2019 강릉-동해 산불 피해 지역에 대한 PlanetScope 영상을 이용한 지형 정규화 기법 분석)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.179-197
    • /
    • 2020
  • Topographic normalization reduces the terrain effects on reflectance by adjusting the brightness values of the image pixels to be equal if the pixels cover the same land-cover. Topographic effects are induced by the imaging conditions and tend to be large in high mountainousregions. Therefore, image analysis on mountainous terrain such as estimation of wildfire damage assessment requires appropriate topographic normalization techniques to yield accurate image processing results. However, most of the previous studies focused on the evaluation of topographic normalization on satellite images with moderate-low spatial resolution. Thus, the alleviation of topographic effects on multi-temporal high-resolution images was not dealt enough. In this study, the evaluation of terrain normalization was performed for each band to select the optimal technical combinations for rapid and accurate wildfire damage assessment using PlanetScope images. PlanetScope has considerable potential in the disaster management field as it satisfies the rapid image acquisition by providing the 3 m resolution daily image with global coverage. For comparison of topographic normalization techniques, seven widely used methods were employed on both pre-fire and post-fire images. The analysis on bi-temporal images suggests the optimal combination of techniques which can be applied on images with different land-cover composition. Then, the vegetation index was calculated from the images after the topographic normalization with the proposed method. The wildfire damage detection results were obtained by thresholding the index and showed improvementsin detection accuracy for both object-based and pixel-based image analysis. In addition, the burn severity map was constructed to verify the effects oftopographic correction on a continuous distribution of brightness values.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Mapping of Drought Index Using Satellite Imagery (위성영상을 활용한 가뭄지수 지도제작)

  • Chang, Eun-Mi;Park, Eun-Ju
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.3-12
    • /
    • 2004
  • It is necessary to manage water resources in rural areas in order to achieve proper development of new water resources, sustainable usage and reasonable distribution. This paper aims to analyze multi-temporal Landsat-7 ETM+data for soil moisture that is essential for crops in Ahnsung area. The ETM data was also fused with KOMPSAT-1 images in order to be used as backdrop watershed maps at first. Multi-temporal Images showed also the characteristics of soil moisture distribution. Images taken in April showed that rice paddy had as low reflectance as artificial features. Compared with April scenes, those taken in Hay and June showed wetness index increased in the rice paddies. The mountainous areas have almost constant moisture index, so the difference between the dates was very low while reservoirs and livers had dramatic changes. We can calculate total potential areas of distribution of moisture content within the basin and estimate the areas being sensitive to drought. Finally we can point out the sites of small rice paddies lack of water and visualize their distribution within the same basin. It can be said that multi-temporal Landsat-7 ETM+ and KOMPSAT data can be used to show broad drought with quick and simple analysis. Drought sensitiveness maps may enable the decision makers on rural water to evaluate the risk of drought and to measure mitigation, accompanied with proper data on the hydrological and climatic drought.

  • PDF

Classification of Sedimentary Facies Using IKONOS Image in Hwangdo Tidal Flat, Cheonsu Bay (IKONOS 영상을 이용한 천수만 황도 갯벌 표층 퇴적상 분류)

  • Ryu, Joo-Hyung;Woo, Han Jun;Park, Chan-Hong;Yoo, Hong-Rhyong
    • Journal of Wetlands Research
    • /
    • v.7 no.2
    • /
    • pp.121-132
    • /
    • 2005
  • To classify the surface sedimentary facies using IKONOS image collected over Hwangdo tidal flat in Cheonsu Bay, the optical reflectance was compared for characterizing various sedimentary environments such as grain size, tidal channel pattern and area ratio of surface remnant water. The intertidal DEM (Digital Elevation Model) was generated by echo-sounder for analyzing the relationship between IKONOS image and sedimentary environments including topography. The boundary of the optical reflectance between mud-mixed facies and sand facies was distinct, and discrimination of the associated sandbar feature was also possible. The mud-mixed facies coupled with intricate tidal channels is confined to the relatively hi호 topography of Hwangdo tidal flat. The boundary between mud and mixed flat was indistinct in IKONOS optical reflectance but it would have a difference in the area ratio of surface remnant water. The dark area in the image represented the well developed sand facies having a lot of surface remnant water due to the relatively low surface topography. The overall accuracy of characterizing the surface sediment facies by maximum likelihood classification method was 86.2 %. These results demonstrate that high spatial resolution satellite imagery such as IKONOS coupled with knowledge of grain size, surface remnant water and tidal channel network can be effectively used to characterize the surface sedimentary facies (mud, mixed and sand) network of the tidal flat environments.

  • PDF

Assessment of Arable Soil Erosion Risk in Seonakdong River Watershed using GIS, RS and USLE (USLE 및 GIS, RS를 이용한 서낙동강 유역 농경지 토양침식 위험도 평가)

  • Ko, Jee-yeon;Lee, Jae-saeng;Jung, Ki-yul;Yun, Eul-soo;Choi, Yeong-dae;Kim, Choon-shik;Kim, Bok-jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.173-183
    • /
    • 2006
  • Purpose of this study was to estimate of soil erosion, which is related with crop productivity and water quality in watershed, in Seonakdong river watershed using USLE. The data set for USLE estimation were derived from detailed digital map(K factor), satellite imagery(C and P factors) and DEM(LS factor). The R factor was calculated by AWS data from Kimhae agricultural technology center. The soil loss from arable land was equivalent of 31.5% of total soil loss in Seonakdong river watershed. The soil loss amount of paddy field and upland were 2.8% and 97.2% of arable land, respectively, even in the area where paddy field was occupied much largely as 76.3%. The reason of large amount of soil loss from upland was that 30.4% of upland was distributed at "severe" and "very severe" soil erosion grade in watershed. The distribution of soil erosion grade during cropping season(May-Sept.) was similar to the annual soil loss. Soil erosion of non-cropping season(Oct.-Apr.) was small due to a low R factor. But, soil erosion grade of near mountain footslope areas showed severe and very severe even in non-cropping season.

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images (UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석)

  • SONG, Bong-Geun;KIM, Gyeong-Ah;SEO, Kyeong-Ho;LEE, Seung-Won;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.162-175
    • /
    • 2018
  • The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

Analysis of Snowfall Development Mechanism over the Korean Peninsula due to Polar Low (극저기압에 의한 한반도 강설 발달기구 분석)

  • Kim, Jinyeon;Min, Ki-Hong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.645-661
    • /
    • 2013
  • The synoptic, thermodynamic, and dynamic characteristics of a heavy snowfall event that occurred in Seoul metropolitan area on 27 to 28 December 2010 was investigated. During this period there was a distinctive case that was identified as a polar low. We analyzed surface and upper level weather charts, snowfall amount, sea surface temperature, satellite imagery, sounding, and the National Center for Environmental Prediction global $1^{\circ}{\times}1^{\circ}$ reanalysis data. The polar low developed in an area where there was strong baroclinicity in the lower level aided by strong conditional instability due to 925 hPa warm air advection and 700 hPa cold air advection. The development mechanism of polar low is due, in part, to the tropopause folding, which advected stratospheric air increasing potential vorticity in mid-level and inducing cyclonic vorticity and convergence in low-level. Eventually clouds developed and there were snowfall total of 10 cm in Seoul metropolitan area and as much as 20 cm in southern parts of Korea. During the snowfall development, there was a $-45^{\circ}C$ cold core at 500 hPa and shortwave maintained $3-5^{\circ}$ separation with surface trough, which favored the development of polar low located in the warm sector and cyclonic advection area. The height of the dynamical tropopause lowered to 700 hPa during the peak development and increase in potential vorticity allowed strong vertical motion to occur. Overall, there was a close relationship between the development of snowfall and tropopause undulation. The heaviest snowfall occurred east of the tropopause folding where strong cyclonic vorticity, vertical motion, and moisture advection all coincided while the polar low was passing through the Korean peninsula.

A Study on the Precise Lineament Recovery of Alluvial Deposits Using Satellite Imagery and GIS

  • 이수진;황종선;이동천;김정우;석동우
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.62-62
    • /
    • 2003
  • Landsat TM 영상을 이용, 명암차가 높은 산악 지역에 적용해왔던 알고리즘을 개선하여 비교적 명암차가 낮고 넓게 분포하는 충적층 지역의 선구조를 추출하는 알고리즘을 개발하였다. 수치지형모델(OEM)에 대하여 Local Enhancement 를 이용해서 평탄한 지역을 선정하여 이로부터 충적층을 추출하였다. Zevenbergen & Thorno's Method를 3×3 moving windowing을 통해서 최대 경사방향과 경사를 구해서 충적층을 지나는 선구조 요소를 추출하고 다시 Hough 변환을 이용해서 1차 선구조를 추출하였다 이를 이용하여 충적층의 직각방향의 지형단면의 경사를 유추해서 spline 보간법을 이용해 단면의 최저점을 구하고 이 구해진 점들을 다시 Hough 변환을 이용해서 최종 선구조를 추출하였다. 본 연구에서 사용한 알고리즘은 기존 알고리즘에서 사용된 소창문보다 훨씬 큰 충적층이 분포하는 지역의 지형 경사가 수렴하는 부분에 선구조가 뚜렷이 나타남을 볼 수 있다. 최대경사방향과 경사를 구해서 얻어진 1 차선구조와 최종 선구조에서 선구조 방향이 다소 차이를 보인다. 1 차 선구조의 수직방향 지형단면의 자료를 이용함에 있어, 지형 단면의 시작정과 끝지점을 임의적으로 결정하는 것이 아니라, 충적층을 가로질러 최고점까지 또는 다음 충적층이 나을 때까지의 자료를 이용해서 보간법을 사용하였고, 충적층의 넓이에 따라 보간할 자료량의 차이에 의한 오차가 발생할 수 있다. 넓은 충적층에서 선구조가 잘 추출되는 반면에 좁은 충적층이 분포하거나 계곡에 해당하는 지역에l서는 경사수렴부와 일치하지 않는 선구조가 추출되었다. 이는 향후 계속적으로 연구해서 보완되어야 할 것으로 사료된다.페클 잡영 제거 정도에 있어 다른 필터들과 큰 차이가 없지만 경계선보존지수는 다른 필터들에 비하여 가장 우수함을 확인할 수 있었다.rbon 탐식효율을 조사한 결과 B, D 및 E 분획에서 유의적인 효과를 나타내었다. 이상의 결과를 종합해볼 때, ${\beta}$-glucan은 고용량일 때 직접적으로 또는 $IFN-{\gamma}$ 존재시에는 저용량에서도 복강 큰 포식세로를 활성화시킬 뿐 아니라, 탐식효율도 높임으로써 면역기능을 증진 시키는 것으로 나타났고, 그 효과는 crude ${\beta}$-glucan의 추출조건에 따라 달라지는 것을 알 수 있었다.eveloped. Design concepts and control methods of a new crane will be introduced in this paper.and momentum balance was applied to the fluid field of bundle. while the movement of′ individual material was taken into account. The constitutive model relating the surface force and the deformation of bundle was introduced by considering a representative prodedure that stands for the bundle movement. Then a fundamental equations system could be simplified considering a steady state of the process. On the basi

  • PDF