• Title/Summary/Keyword: sandy silt

Search Result 169, Processing Time 0.033 seconds

Environment of Deposition and Characters of Surface Sediments in the Nearshore off Byun-San Peninsula, Korea (변산반도 연근해 표층 퇴적물의 특성과 퇴적환경)

  • Oh, Jae-Kyung;Choi, Kyu-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 1999
  • To study the characters of surface sediment and to describe the seasonal depositional environment as a result of sedimentation process off Byun-San Peninsula, a total 61 samples of surface sediment (32 samples in summer; 29 samples in winter) were collected and analysed. A digitized depth data from sea chart and echosounding profiles along five trans-sections were helpful for understanding the morphological factors. The types classified by the characters of surface sediment are type I (sand, S), type II (silty sand, zS), and type ill (sandy silt, sZ). Mean grain size varies from 2.11 to 7.81 ${\Phi}$. The positive-skewness shows the typical tide-dominated environment. The sediment type of the northwestern stations is medium sand and the sorting value is 0.5~1.4 ${\Phi}$ of well/moderately sorted. Meanwhile, other stations are composed of muddy sands and sandy muds transported from rivers and offshore. These sediment types toward inshore change gradually from silty sand to sandy silt. According to the C/M diagram, there are three major transport modes of sediment: bed load (Mode A), graded suspension (Mode B), and suspension (Mode C), correlating with north-eastern sandy area, middle part of silty-sand area, and southern sandy-silt area, respectively. The result of Principal Component Analysis shows also similar pattern of sediment types. In result, sediment texture of type III tends to be finer and more poorly-sorted than that of type II and sediment facies are correlateed with sedimentation process.

  • PDF

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 토성에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1176-1180
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 11 sites for silt loam, 4 sites for sandy loam, and 5 sites for loam in Gyeongnam Province. The FAME content of fungi in loam ($76nmol\;g^{-1}$) was higher than that of in sandy loam ($45nmol\;g^{-1}$). Sandy loam had significantly lower ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of silt loam (p<0.05), indicating that microbial stress decreased. In addition, actinomycetes community of loam was higher than that of sandy loam.

Distribution of Heavy Metal Contents in Medicinal Plants and Soils with Soil Texture (약용작물(藥用作物)과 그 재배토양(栽培土壤)의 토성별(土性別) 중금속함량(重金屬含量) 분포(分布))

  • Jung, Goo-Bok;Kim, Bok-Young;Kim, Kyu-Sik;Lee, Jong-Sik;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.158-164
    • /
    • 1996
  • This survey was conducted to investigate the distribution of heavy metal contents in medicinal plants and soils. Plant and soil samples were collected at 254 sites(Angelica gigas : 81, Astragalus membranceus : 38, Platycodn glandiflorum : 36, Paeonia albilora : 34, Codonopsis lanoceolata : 32, Ligusticum chuanxiong : 17, Bupleurum falcatum : 16, respectively) over the country, Soil texture, pH values and heavy metal content of soils and medicinal plants were evaluated as major factors. Soil texture classification showed that sandy loam, loam, loamy sand and silt loam were 46.1%, 26.0%, 19.3% and 8.6% of the total, respectively. The contents of O.M, Ex.Ca. Ex.Mg and EC value were higher in loamy(sandy loam, loam and silt loam)soils than in sandy(loamy sand)soils, but available $P_2O_5$ contents of loamy sand soils were higher than those of sandy loam, loam, and silt loam. The contents of Cd, Cu, Pb, Zn and Ni in soil were high in loamy soils, while Cr content was high in loamy silt soils. The contents of Cu and Cr in Angelica gigas were high in loamy soils, and those of Pb in Astragalus membranceus, Paeonia albiflora and Codonopsis lanoceolata were high in sandy loam soils. Correlation coefficients between heavy metal contents in medicinal plants and their soils with soil texture were positively correlated in sandy loam and loam at Cu, loam at Zn, sandy loam, loam and loamy sand at Cr, respectively. Correlation coefficients between pH value of the soils and contents of Cd, Zn and Ni in medicinal plants were negatively correlated, but those of Cd, Pb, Zn and Ni in soils were positively correlated.

  • PDF

Characteristics of Particles Size and Element Distribution in the Coastal Bottom Sediments in the Vicinity of Youngkwang Nuclear Power Plant (영광 원자력발전소 주변해역 표층퇴적물의 입도와 원소분포 특성)

  • 은고요나
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.195-204
    • /
    • 2000
  • order to investigate physical characteristics and element concentrations of sediments, coastal bottom sediments were collected at 20 stations in the vicinity of Youngkwang Nuclear Power Plant. After air drying of samples in the laboratory. article size distribution was examined by Master sizer (X-350F), radio-activity by HPGe ${\gamma}$-spectrphotometer, and element concentrations by ICP-AES and AAS. According to particle size analysis , sediments are mainly composed of silt fraction weith 23% of sand, 65% of silt and 12% of clay on average. Most sediments are derived from muddy environment that silt dominates with the characteristics of 5.3${\varsigma}$ mean particle size, poorly sorted, very fine skewed and lepto-kurtic. Only two sediments are well sorted with sandy silt owing to wind, winnowing action, tide and current andits complex reactions. Element concentrations in the coastal bottom sediments are relatively high at finer sediment and show significant relationship with grain size. Index of geoaccumulation by heavy metals at every sampling station is classified as practically unpolluted. The radioactivities of the sediments were measured for 15 isotope elements, and 2 elements of K-40 and Cs-137 were detected in most sediments. The K-40 is the natural nuclide and the artificial nuclide of Cs-137 was thought to be derived from the fallout of past nuclear weapon test. The results of correlation coefficient between grain size and radioactivity shows that the activity of Cs-137 significantly increases in finer grain.

  • PDF

Impacts of Soil Texture on Microbial Community of Orchard Soils in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Weon, Hang-Yeon;Heo, Jae-Young;Jeong, Jeong-Seok;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • Soil management for orchard depends on the effects of soil microbial activities. The present study evaluated the soil microbial community of 25 orchard (5 sites for sandy loam, 7 sites for silt loam, and 13 sites for loam) in Gyeongnam Province by fatty acid methyl ester (FAME) method. The average values for 25 orchard soil samples were $270nmol\;g^{-1}$ of total FAMEs, $72nmol\;g^{-1}$ of total bacteria, $34nmol\;g^{-1}$ of Gram-negative bacteria, $34nmol\;g^{-1}$ of Gram-positive bacteria, $6nmol\;g^{-1}$ of actinomycetes, $49nmol\;g^{-1}$ of fungi, and $7nmol\;g^{-1}$ of arbuscular mycorrhizal fungi. In addition, silt loam soils had significantly low ratio of cy17:0 to $16:1{\omega}7c$ and cy19:0 to $18:1{\omega}7c$ compared with those of loam soils (p < 0.05), indicating that microbial activity increased. The average soil microbial communities in the orchard soils were 26.7% of bacteria, 17.9% of fungi, 12.6% of Gram-negative bacteria, 12.5% of Gram-positive bacteria, 2.5% of arbuscular mycorrhizal fungi, and 2.2% of actinomycetes. The soil microbial community of Gram-negative bacteria in silt loam soils was significantly higher than those of sandy loam and loam soils (p < 0.05).

Effects of Water Table Depth in Different Soil Texture on Growth and Yield of Barley and Wheat (토성별 지하수위가 밀, 보리의 생육 및 수량에 미치는 영향)

  • 이홍석;박의호;송현숙;구자환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.195-202
    • /
    • 1995
  • This experiment was performed to characterize the optimum water table level for the growth and yield of barley(var. Olbori) and wheat(var, Grumil), Olbori and Grumil were grown in the 550 liter plastic pot filled with silt loam or sandy loam, During the whole growth period, the water table adjusted to be 20, 30, 40, 50, and 70cm, Higher water table was resulted in the decrease in plant height and top dry weight, but in the increase of the ratio of top to root dry weight, especially in barley, This suggested that high water table level affected more the growth of top than that of root, The number and area of green leaves were decreased as the water table was higher than 30 to 40cm at the late growth period(May 18, 1993), The largest number and area of green leaves were shown at 50cm of water table in sandy loam and at 70cm in silt loam, As the water table was high, the leaf chlorophyll content was low, And barley was affected more significantly than wheat by soil texture, The photosynthetic activity was decreased remarkably at 20cm water table, Heading period was 2 to 3 and 4 days earlier at the 20cm water table of sandy loam in barley and wheat, respectively, However this earlier heading was not shown in silt loam, Grain filling was accelerated 5 to 7 days earlier in barley and 10 days in wheat grown at 20cm water table, The highest yield was present at 50 and 70cm water table, The yield was decreased remarkably at 20cm water table, resulting that yield reduction ratio of barley was 71.1% and 72, 2%, and that of wheat was 41.0% and 60, 0% in sandy loam and silt loam, respectively, High water table decreased the number of spike per unit area, but increased the seed weight per spike in barley, However, High water table reduced the seed weight per spike in wheat. There was significant correlation between yield and leaf chlorophyll content in wheat and barley, Yield was correlated significantly with green leaf area in barley, and with top dry weight, ratio of top to root dry weight chlorophyll content and photosynthetic activity in wheat. The optimum water table was 50 to 70cm in wheat and barley, They grew fairly well at 30cm water table of sandy loam, and at 40cm of silt loam.

  • PDF

Effect of Soil Temperature on Growth and Root Characteristics and P, K Uptake by Soybean (토양온도(土壤溫度)가 대두(大豆)의 생육(生育) 및 뿌리 특성(特性)과 P, K 흡수(吸收)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Han, Seong;Ha, Sang-Geun;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.1
    • /
    • pp.16-25
    • /
    • 1992
  • A pot experiment was conducted to understand effect of soil temperaute on soybean shoot and root growth, and its relations to nutrient uptake including phosporus and potassium. Pregerminated soybean seedlings, Paldal cultivar, were planted for 43 days on the pots with Ihyeon silt loam and Samgag sandy loam in the temperature controled water baths at 17, 25 and $32^{\circ}C$. Shoot and root samples were taken at four times and analyzed. Shoot and root dry matter weights were heavier as higher soil temperaure. The root dry matter increased faster than shoot at earlier period. Shoot dry matter weights grown at 17 and $25^{\circ}C$ showed little difference between two soils, however, those grown in silt loam at $32^{\circ}C$ were heavier than sandy loam. The total lengths of roots were longer as higher soil temperature, and longer in silt loam than sandy loam. The roots grown in sandy loam at low temperature were thicker than the roots grown in silt loam at high temperature. The uptakes of phosphorus and potassium were higher as higher tempeature with same trend with dry matter. The uptake rate of unit root surface area was higher in sandy loam soil than silt loam. The uptake rates showed strong dependence on soil temperature as well as dependence of water uptake rate. Based on Dalton and Gardner model, at high temperature the dependence trend of phosphorus and potassium on soil temperature showed with active uptake model, while at low temperature the dependence showed without active uptake model.

  • PDF

Effect of Tillage Methods on Rice Yield and Soil Properties under Different Soil Textures (토성별 경운방법이 벼 수량과 토양특성에 미치는 영향)

  • 허봉구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.290-295
    • /
    • 1993
  • To evaluate rice yield and changes of soil properties, 3 tillage methods including no tillage was tested in different soil textures, such as silty clay, sandy loam and silt loam fields. Hwaseongbyeo was transplanted by machine at May 28. Water and soil temperature of no tillage were lower than other plots, but differences of temperature were not larger in different treatments. Mean water requirement in depth of sandy loam field was larger than other textures, but that of silty clay field was smaller. The water requirement in depth of no tillage was larger by 1.4~2.2mm / day than the other plots. In the silty clay field, mineral contents, except Na$_2$O content, of rice plant of no tillage plot at the harvesting stage was higher than the other treatments. The rice yields in the no tillage plot were decreased by 18% in sandy loam, by 7% in silty clay and by 1% in silt loam respectively than the power tiller plots.

  • PDF

Soil Characteristics and Soil Salinity Changes in the Reclaimed Tideland of Korea (간척지 토양특성과 토양염류도 변화 개관)

  • Lee, Seung-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.14-19
    • /
    • 2009
  • To obtain the basic data on reclaimed tideland soils, 90 soil samples were collected from 9 tideland reclamation project areas in Korea. The soils consisted of clay (2.0 to 35.0 percents), silt (2.0 to 80.0 percents), and sand (8.0 to 95.0 percents), and were dominantly classified sandy loam and silty loam. The soils had pH of 4.5 to 9.1, organic matter of 0.50 to $19.20g\;kg^{-1}$, total nitrogen of 4 to $1,159mg\;kg^{-1}$, and avaliable phosphorus (as $P2_O_5$) of 3.5 to $147.7mg\;kg^{-1}$. The electrical conductivity in soil saturation-paste extracts (ECe) ranged between $0.62dS\;m^{-1}$ and $31.60dS\;m^{-1}$ and the concentrations of sodium and magnesium ions were higher than those of potassium and calcium ions. The magnitude of the ECe was as low as that of normal level in Nam-Po, Pu-Sa, and Kye-Hwa reclamation project areas having sandy loam texture, but was as high as that of normal level saline-sodic level in Nam-Yang and So-Po reclamation project areas having silty loam texture even though the soils were cultivated more than 10 years as a paddy. Some part of Saemangeum area was surveyed and soil textures were various; some were silt loam and some were sandy loam. The ECe values were very high in topsoil and subsoil.