• Title/Summary/Keyword: sandy loam

Search Result 623, Processing Time 0.034 seconds

Soil Characteristics and Soil Salinity Changes in the Reclaimed Tideland of Korea (간척지 토양특성과 토양염류도 변화 개관)

  • Lee, Seung-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.14-19
    • /
    • 2009
  • To obtain the basic data on reclaimed tideland soils, 90 soil samples were collected from 9 tideland reclamation project areas in Korea. The soils consisted of clay (2.0 to 35.0 percents), silt (2.0 to 80.0 percents), and sand (8.0 to 95.0 percents), and were dominantly classified sandy loam and silty loam. The soils had pH of 4.5 to 9.1, organic matter of 0.50 to $19.20g\;kg^{-1}$, total nitrogen of 4 to $1,159mg\;kg^{-1}$, and avaliable phosphorus (as $P2_O_5$) of 3.5 to $147.7mg\;kg^{-1}$. The electrical conductivity in soil saturation-paste extracts (ECe) ranged between $0.62dS\;m^{-1}$ and $31.60dS\;m^{-1}$ and the concentrations of sodium and magnesium ions were higher than those of potassium and calcium ions. The magnitude of the ECe was as low as that of normal level in Nam-Po, Pu-Sa, and Kye-Hwa reclamation project areas having sandy loam texture, but was as high as that of normal level saline-sodic level in Nam-Yang and So-Po reclamation project areas having silty loam texture even though the soils were cultivated more than 10 years as a paddy. Some part of Saemangeum area was surveyed and soil textures were various; some were silt loam and some were sandy loam. The ECe values were very high in topsoil and subsoil.

Behavior of New Heribicide Bensulfuron methyl (DPX-F5384) in Soil (토양중(土壤中)에 있어서 신규(新規) 제초제(除草劑) Bensulfuron methyl (DPX-F5384) 의 행동(行動))

  • Jang, I.S.;Moon, Y.H.;Ryang, H.S.
    • Korean Journal of Weed Science
    • /
    • v.7 no.1
    • /
    • pp.74-77
    • /
    • 1987
  • This study was undertaken to elucidate the behavior of herbicide bensulfuron methyl [ methyl 2-[[[[[(4, 6-dimethoxy pryrimidine-2yl) amino] carbonyl] amino] sulfonyl] methyl] benzoate] in soils under flooded conditions using the test plant Monochoria vaginalis Pres 1. Besulfuron methyl moved to 3cm depth in clay loam soil and 4 cm depth in sandy loam soil. Herbicide-treated layer was found 0 to 2 cm profile in the former and 0 to 3 cm profile the latter. The half life (GR50) was 87 days in clay loam soil and 78 days in sandy clay loam soil. The period of inactivation lasted for 110 days in clay loam and 100 days in sandy clay loam soil.

  • PDF

Effects of Soil Conditioner "Uresol and Bitumen" Treatments on Water Movement and Soil Loss II. The Changes of Wetting Angle and Water Diffusivity (토양개량제(土壤改良劑) Uresol 및 Bitumen처리(處理)가 토양(土壤)의 수분이동(水分移動)과 유실(流失)에 미치는 영향(影響) II. 습윤각(濕潤角)과 수분(水分)의 광산계수변화(鑛散係數變化))

  • Jo, In-Sang;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.12-17
    • /
    • 1984
  • In order to find out the effects of soil conditioner treatment on the water movement in sandy loam and silt loam soils were treated with two different kinds of soil conditioners, hydrophobic Bitumen 0.4% or hydrophillic Uresol 0.6%, and the changes of wetting angle (soil-water contact angle), penetrability and diffusivity were measured. The results were summarized as follows: 1. Uresol 0.6% treatment decreased the wetting angle of sandy loam more than $10^{\circ}$, but there was no big difference in silt loam. 2. Sandy loam soil was changed to almost hydrophobic and the wetting angle of silt loam soil was increased to $84.9^{\circ}$ as compared to $76.0^{\circ}$ of untreated soil by Bitumen 0.4% treatment. 3. By Uresol treatment, penetrability of sandy loam was doubled but there was not difference in silt loam, and it was decreased to half in two soils by Bitumen treatment. 4. A significant positive correlation between penetrability and the cosine of wetting angle was recognized. 5. Soil water diffusivity was greatly changed by soil conditioner treatment, and the big differences were appeared at lower soil moisture content.

  • PDF

Effects of Lime and Starch Application on The Soil Nitrogen Mineralization in Sandy Loam and Loam (사양토(砂壤土) 및 양토(壤土)에서 토양질소(土壤窒素) 무기화(無機化)에 미치는 석회(石灰)와 전분(澱粉)의 영향(影響))

  • Yun, Sun-Gang;Lee, Suk-Ha;Lee, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.3
    • /
    • pp.165-170
    • /
    • 1991
  • Effects of liming and starch application on the soil pH and mineralization of organic nitrogen were compared to control at $30+/10^{\circ}C$ incubation for six weeks in two soil types(loam, sandy loam) adjusted with 80% of field moisture capacity. 1. While soil pH was increased abruptyl one week after incubation in loam applied with lime and lime+starch, it tended to decrease at control during incubation period. Liming on sandy loam increased soil pH, and application of lime+starch together showed high pH at first week of incubation which was lowered slowly after wards. Significant changes in soil pH was not detected at control or starch application only. 2. The content of $NH_3-N$ in loam started to increse three weeks after incubation, and was maximized at fifth week. Positive correlation was shown at control during incubation period between soil pH and $NO_3-N$ content. Level of $NO_3-N$ content applied with starch or lime+starch was low compared to control. 3. The $NH_4-N$ content was high when sandy loam was applied with lime+starch together. At the first week of incubation, the $NO_3-N$ content was high at control or lime application.

  • PDF

Nitrogen Leaching and Balance of Soils Grown with Cabbage in Weighing Lysimeter (중량식 라이시미터에서 배추 재배에 따른 질소 용탈과 수지)

  • Lee, Ye Jin;Ok, Jung Hun;Lee, Seul Bi;Sung, Jwa Kyung;Song, Yo Sung;Lee, Deog Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.166-171
    • /
    • 2018
  • BACKGROUND: Nitrogen leaching depends on the drainage pattern and nitrate content, and those are influenced by soil hydraulic properties and fertility. The purpose of this study was to confirm how soil texture contributed to leaching and balance of nitrogen, as well as to drainage. METHODS AND RESULTS: This study was performed using undisturbed weighing lysimeters which were piled up with clay loam (Songjung series) and sandy loam (Sanju series) soils in National Institute of Agricultural Science experimental field. Chinese cabbage was cultivated from August 30 to October 31, 2017. The application rates of N, $P_2O_5$, and $K_2O$ were 21.5, 7.8, and $15.0kg\;10a^{-1}$, respectively, and irrigation was supplied at -33 kPa in 30 cm soil depth. Drainage in clay loam was not noticeable, although it was increased by rainfall in early September. By contrast, the trend of drainage in sandy loam was strongly dependent upon rainfall pattern. Owing to different drainage patterns between both soil textures, nitrogen leaching was 5-fold higher in sandy loam than in clay loam. Nitrogen use efficiencies in clay loam and sandy loam were represented as 43% and 52%, respectively. CONCLUSION: The pattern of drainage and nitrogen leaching were greatly depended on clay content in soil. From this study, we carefully suggest that soil texture should be considered as an incidental factor to estimate nitrogen balance.

Characteristics of Soil Water Runoff and Percolation in Sloped Land with Different Soil Textures (경사지 토양에서 강우량과 토성에 따른 물 유출 및 침투 특성)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Hur, Seung-Oh;Jung, Kang-Ho;Kim, Won-Tae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.268-273
    • /
    • 2006
  • Soil loss induced by erosion has come to be a serious problem in Korea's sloped land since more than 70% of upland fields are located on the sloped land area. The purpose of this study was to investigate the phase of water flow in differently soil textured plot soil types by rainfall amount. Lysimeters with slope of 15%, 5 m in length, 2 m in width, and 1 m in depth were prepared and filled up with three different soil textures, such as sandy loam, loam, and clay loam, then relationships between seasonal rainfall and runoff, percolation were analyzed. Runoff and percolation rate were shown to increase linearly with increasing rainfall intensity in all the soil textures, but the starting threshold and increment rate in runoff and percolation occurrence were dependent differently upon soil textures. Percolation increment rate according to the increasing rainfall amount was 0.52, 0.36, and 0.57 for sandy loam, loam and clay loam soil respectively. The threshold rainfall amounts in which percolation occurs were 5.73 mm, 6.80 mm, and 12.86 mm for sandy loam, loam and clay loam respectively. Runoff increment rates were 0.42, 0.48 and 0.46 for sandy loam, loam and clay loam soil. The threshold rainfall amount in which runoff occurs was 10.50 mm in sandy loam, 7.76 mm in loam and 17.40 mm in clay loam. These different phases of water flow by soil texture could be used to suggest guidelines for the best management practice of the farming slope land.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

Effects of Seeding Bed Media and Fungicide on Control of Clubroot Disease of Chinese cabbage Caused by Plasmodiophora brassicae (배추 뿌리혹병(Plasmodiophora brassicae) 방제를 위한 육묘용 상토와 농약처리 효과)

  • Hong, Soon-Sung;Kim, Jin-Young;Park, Kyeong-Yeol
    • Research in Plant Disease
    • /
    • v.9 no.2
    • /
    • pp.64-67
    • /
    • 2003
  • Clubroot disease of Chinese cabbage has extremely occurred in recent years. Conventional soils such as sandy loam soil (saprolite) and clay soil (yellow soil) as bed media combined with field soil application of fungicidal chemicals were tested for the control of clubroot disease. Using sandy loam soil and clay soil as plug seedling bed media efficiently reduced clubroot disease occurrence down to 21.7% and 14.1%, respectively compared to peatmoss (75.7%) and Baroco soil (36.6%) when seedling plants were transplanted into previously-infected Yoncheon field. Application of flusulfamide and azoxystrobin to previsouly-infected soil prior to transplanting also effectively reduced disease incidence, especially when combined with growing seedlings in sandy loam or clay soil media. In conclusion, flusulfamide application prior to trnasplanting as well as utiliz-ing sandy loam and clay soil as a plug bedding media may effectively reduce the occurrence of clubroot dis-ease of Chinese cabbage.

Decomposition characteristics of pollutants by time dependent variation of livestock carcass leachate (매몰지 침출수의 경시변화에 따른 오염물질 분해특성)

  • Kim, Yong Jun;Kang, Young Yeul;Hwang, Dong Gun;Jeon, Tae Wan;Shin, Sun Kyoung
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.338-347
    • /
    • 2017
  • The purpose of this study is to investigation of the decomposition characteristics in a pilot-scale burial site of livestock in three kinds of typical soils in Korea: sandy loam soil, clay loam soil, and sandy soil. In this study, we confirmed that most of the animals in the condition were decomposed within three years as mentioned in the "Livestock burial regional environmental research guidelines." We also determined that the decomposition rate of dead cows was higher than that of dead pigs, and that the biodegradation rate depends on the soil types in the following order: sandy soil > clay loam soil > sandy loam soil. The various external environment factors, such as temperature, moisture, pH, earthiness, nutrient, and the burial depth, should be managed properly for appropriate decomposition of dead animals.