• 제목/요약/키워드: sandwich beams

검색결과 99건 처리시간 0.018초

Bending and free vibration analysis of FG sandwich beams using higher-order zigzag theory

  • Gupta, Simmi;Chalak, H.D.
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.483-499
    • /
    • 2022
  • In present work, bending and free vibration studies are carried out on different kinds of sandwich FGM beams using recently proposed (Chakrabarty et al. 2011) C-0 finite element (FE) based higher-order zigzag theory (HOZT). The material gradation is assumed along the thickness direction of the beam. Power-law, exponential-law, and sigmoidal laws (Garg et al 2021c) are used during the present study. Virtual work principle is used for bending solutions and Hamilton's principle is applied for carrying out free vibration analysis as done by Chalak et al. 2014. Stress distribution across the thickness of the beam is also studied in detail. It is observed that the behavior of an unsymmetric beam is different from what is exhibited by a symmetric one. Several new results are also reported which will be useful in future studies.

트러스형 금속 샌드위치 판재에서 심재의 전단특성계수의 실험적 결정 (Experimental Investigation of Shear Modulus of a Core in a Metallic Sandwich Plate with a Truss Core)

  • 정창균;성대용;양동열;문경제;안동규
    • 한국정밀공학회지
    • /
    • 제24권8호통권197호
    • /
    • pp.67-73
    • /
    • 2007
  • A sandwich plate with a truss core is composed of two face sheets and a pyramidal truss core between face sheets. This paper shows how to estimate the shear modulus of a truss core, experimentally. To determine the shear modulus of truss cores, 3-point bending tests are performed. For tests, metallic sandwich beams with truss cores are fabricated. Two kinds of truss cores are tested to investigate the shear modulus. Each test is repeated under different widths in order to increase accuracy. As a result, the shear modulus of sandwich beam is properly calculated. The deflection of a sandwich beam with a truss core by shear deformation takes the major contribution of the total deflection and the shear modulus of sandwich beam should be considered whenever it is designed.

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

Development of the educational management model for dynamic instability analysis in nanocomposite sandwich beam

  • Wenxi Tang;Chunhui Zhou;Maryam Shokravi;X. Kelaxich
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.9-18
    • /
    • 2024
  • This paper presents the development of an educational management model for analyzing the dynamic instability of nanocomposite sandwich beams. The model aims to provide a comprehensive framework for understanding the behavior of sandwich micro beams with foam cores, featuring top and bottom layers made of smart and porous functionally graded materials (FGM) nanocomposites. The bottom layer is influenced by an external electric field, and the entire beam is supported by a visco-Pasternak foundation, accounting for spring, shear, and damping constants. Using the Kelvin-Voigt theory to model structural damping and incorporating size effects based on strain gradient theory, the model employs the parabolic shear deformation beam theory (PSDBT) to derive motion equations through Hamilton's principle. The differential quadrature method (DQM) is applied to solve these equations, accurately identifying the improvement in student understanding (ISU) of the beams. The impact of various parameters, including FGM properties, external voltage, geometric constants, and structural damping, on the DIR is thoroughly examined. The educational model is validated by comparing its outcomes with existing studies, highlighting the increase in ISU with the application of negative external voltage to the smart layer. This model serves as a valuable educational tool for engineering students and researchers studying the dynamic stability of advanced nanocomposite structures.

C0-type Reddy's theory for composite beams using FEM under thermal loads

  • Fan, Xiaoyan;Wu, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.457-471
    • /
    • 2016
  • To analyze laminated composite and sandwich beams under temperature loads, a $C^0$-type Reddy's beam theory considering transverse normal strain is proposed in this paper. Although transverse normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the $C^0$ interpolation functions are only required for the finite element implementation. Based on the proposed model, a three-node beam element is presented for analysis of thermal responses. Numerical results show that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated composites.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권4호
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces

  • Ahn, Namshik;Lee, Kangsu
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.501-515
    • /
    • 2011
  • Sandwich elements have high flexural rigidity and high strength per density. They also have excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin's plate theory is studied from a Hamilton's principle point of view. This theory is modified to include the influence of shear deformation and rotary inertia, and the equation of motion is derived using energy relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates are identical to the sandwich plates currently used in various structural elements of surface effect ships (SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear moduli are obtained from the four-point bending tests on the sandwich beams.

하중에 대한 샌드위치보의 디자인 변수 선택 (Selection of design variables in the Sandwich Beam for load resistance)

  • Kim, Jongman;Hwang, Hyo-Kune;Lee, Jin-Woo;Kim, Wae-Yeule
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.198-201
    • /
    • 2002
  • It has been well-blown that sandwich structures are efficient to resist bending loads by increasing the moment of inertia of the panel. However, the accurate theoretical prediction of failure load and its optimization of sandwich beams for strength under concentrated loads were so complicated. Moreover, the appropriate selection of the variables, such as face thickness, core density and core thickness of the sandwich beam with many theories has continuously researched to satisfy for the given strength to weight structural requirement. There will be interesting to investigate the effect of those variables with its optimization for the load resistance.

  • PDF

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • 제9권4호
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.