• Title/Summary/Keyword: sand foundation

Search Result 257, Processing Time 0.033 seconds

Bearing of Strip Foundation on Geogrid-Reinforced Sand With Embedment Depth (기초의 근입깊이를 고려한 지오그리드 보강 사질토지반의 지지력 평가)

  • 신은철;신동훈;오영인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.233-240
    • /
    • 1999
  • The laboratory tests on geogrid-reinforced sand were conducted with considering embedment effect. The relative densities of sand are 60% and 80%, respectively. The embedment depths of foundation were varied as D$\_$f/B=0, 0.5, 1.0. Based on the model test results, (u/B)$\_$cr/, BCR$\_$u/, and (b/B)$\_$cr/, were determined. The optimum depth of reinforcement was determined. The embedment depth of foundation is greatly contributed on the bearing capacity of geogrid-reinforced sand.

  • PDF

A Study on the Bearing Capacity of the Sand Foundation Including the Dense Sand Layer (조밀한 층을 포함하는 사질 지반의 지지력에 관한 연구)

  • Park, Eun Young;Lee, Sang Duk;Kwon, Oh Yeoh;Hu, Chang Tack
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.237-242
    • /
    • 1993
  • The bearing capacity of the sand foundation including a thin dense sand layer depends on the stiffiness, thickness and the location of the dense sand layer. In this paper was the influence of the dense sand layer on both the bearing capacity and the failure configuration is studied by means of K.E.M(Kinematic Element Method). K.E.M was implemented to get the excat solution starting from the upper bound of the analysis. The result show that the bearing capacity of the foundation and the failure configuration is greatly influenced by the dense sand layer, when the layer is located not deeper than 3/5 of the foundation width.

  • PDF

Growth Characteristics of Kentucky Bluegrass on Different Rootzone Foundations (지반 유형에 따른 켄터키 블루그래스의 생육특성)

  • 이혜원;정대영;심상렬
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.6
    • /
    • pp.95-103
    • /
    • 2004
  • A turfgrass rootzone foundation is one of the important iufluences on the growth of cool-season turfgrass such as Kentucky bluegrass, which is usually grown on korean golf courses and athletic fields in Korea. This study was carried out to evaluate the growth of Kentucky bluegrass on 4 types of turfgrass root-zone foundations: a 2cm thickness of Sand 90%+Peat humus 8%+Zeolite 2% mixture on a subsoil base (C), a 20cm thickness of Sand 90%+Peat humus 8%+Zeolite 2% mixture (S), a 20cm thickness of Sand 45%+fine sand(a sort of Bomyungsa) 45%+Peat humus 8%+Zeolite 2% mixture (S+F), and a 20cm thickness of Sand 45%+fine sand(a sort of Bomyungsa) 45%+Peat humus 8%+Zeolite 2% mixture on a 20cm thick drainage layer (S+F(G)). Visual ratings of Kentucky bluegrass on the C foundation were low throughout the experiment when compared to S, S+F, and S+F(G) foundations, which contained high contents of sand with a high water infiltration rate. However, poor growth of Kentucky bluegrass in the summer of 1991 on the S foundation was likely to be caused by a too high water infiltration rate (185.8cm/hr). The growth of Kentucky bluegrass on the S+F(G) was good while the growth was a little weak at the developing stage on the S +F foundation. If the cost had to be considered when constructing golf courses and athletic fields, The S+F foundation without the drainage layer would be the best choice in terms of low cost and good quality of Kentucky bluegrass compared to the S+F(G). In this result, the infiltration rate was regarded as the most influential factor to the growth of Kentucky bluegrass on rootzone foundations.

Model Test and Deformation Analysis of the Improved Soft Foundation( Il) (개량연약지반의 모형실험과 변형해석 (II))

  • 이진수;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.73-86
    • /
    • 1994
  • Ths paper was aimed to investigate the effect of reinforcement for the deformation characteristics of clayey foundation. Among numerous improvement method of foundation, only geotextil-reinforced foundation and foundation with both geotextile and sand mat which were 2-dimensional model clayey foundations were selected for load test in order to obtain fundamental results in analizing the behavior of the foundation with geotextile. To scrutinize the behavior characteristics and effect of reinforcement, the model foundations were constructed with various conditions on the location of layout of geotextile, the number of layouts and the depth of sand mat As for the technique of the numerical analysis elasto-plastic constitutive model for clayey soil, beam element for geotextile and elastic model for sand were respectively employed. Interface element was introduced for the block between materials with different rigidity. Observed values and numerical results were compared with satisfactory correspondence, which proved that the numercial technique developed in this paper was available.

  • PDF

The Applicability of Numerical Analysis Technique to The Soft Clayey Foundation Improved by Sand Drain (Sand Drain 지반에 대한 변형해석법의 적용성)

  • Lee, Jean-Soo;Lee, Moon-Soo;Jang, Chul
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.96-105
    • /
    • 1998
  • Soil properties, drain conditions and numerical analysis technique have great influence upon consolidation behavior. In relevant to the above described fact, this paper aims to examining the applicability of prediction model of consolidation as well as deformation characteristics for soft clayey foundation improved by sand drain. A case study for actual foundation of Kwangyang steel works was performed. Single drain consolidation model proposed by Hansbo and Biot's consolidation theory coupled with modified Cam-clay model developed during the research were employed for the FEM numerical analysis of the foundation. Both smear effect and drain capacity were taken into account for the analysis. Finally the applicability of the newly developed technique to the behavior of foundation composed of soft clay proved satisfactory.

  • PDF

An Experimental and Numerical Sutdy oft Restraint Effects of Deformation in Model Foundation(1) (연약지반의 변형억제 효과에 대한 2차원 모형실험 및 수치계산)

  • 박병기;남진희
    • Geotechnical Engineering
    • /
    • v.6 no.3
    • /
    • pp.53-64
    • /
    • 1990
  • Load tests for ten small-scale foundation models combined with geotextile and sand mat were conducted to study the effect of geotextile, sand mat, and foundation types on deformation of foundation soils. In addition, the experimental results were compared with those obtained from numerical analysis using a software program. The main conclusions were summarized as follows : 1. The restraint effect on GIT is more outstanding on the lateral displacement than on the vertical one. 2. The only use of SIM has better effect for the restraint of lateral displacement than vertical ogle. 3. The use of both SIM and GIT are required for the restraint of lateral and vertical displacement.

  • PDF

연약지반 변형해석을 위한 다목적 Program개발

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.362-375
    • /
    • 1991
  • Background and Necessity of the study : For more than 20 years, the soil engineering reserach group of Chonnam National University has been performing the deformation analysis of soft clayey foundation, since the University is located near the south-western coast of Korean Peninsulla, along which tide reclamation works have been under proaressing. Associsted with the fact mentioned above, the researchers have been developing a computer program in order to carry out deformation analysis of soft foundation since early 1980. Case-studies : In this research, the Biot's equation was selected as the governing equation coupled with several constitutive models including original and modified Cam-clay models, elasto-viscoplastic model, Lade's model etc. The anisotropy of soi1 can be considered in this program. To validate the accuracy of the computer program developed a couple of case-studies were performed. These include the pilot banking, sand drain considering smear effect and compound foundation reinforced with sheet pile into soft foundation.i) The pilot banking Good results could be acquired by assuming banking load as the body force composed of finite element mesh rather than equivalent concentrated load.ii) The sand drain Due to smear, the delay of consolidation was remarkable at the early stsge. so safety for the failure of foundation should be checked for the initial step of consolidation. iii) The compound foundation Accurate results were obtained by introducing the joint element method for the soft foundation reinforced with sheet pile into soiㅣ.

  • PDF

Bearing Capacity of a Square Shallow Foundation with and without Geogrid Reinforcement (Geogrid보강 여부에 따른 정방형 얕은 기초의 지지력에 관한 연구)

  • 신방웅;김수삼
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-16
    • /
    • 1994
  • This paper presents a new method to improve the bearing capacity of a square shallow foundation placed on a sand layer reinforced with geogrids which shows promise for further field work. The geogrid reinforcement will be necessary in the case of machine foundation, embankments for railroads, and foundations of structures in earthquake-prone areas. The ultimate bearing capacity (UBC) for the unreinforced sand and reinforced sand has been compared. Also, the effect of length, spacing, width of reinforcement on increasing the UBC have been evaluated. Based on the present model test results, it appears that significant improvement in the UBC of medium sand can be achieved by geogrid reinforcement.

  • PDF

Application of Numerical Analysis for Sand Drain by the Multi-purpose Program of Soft Foundation Analysis (연약식반교양공법에 이용될 범용프로그램의 Sand Drain 공법에의 적용)

  • 박병기;정진섭
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.17-26
    • /
    • 1985
  • This study was carried out for the purpose of comparing in reference to sand drain in the next three different cases. First, The case of drain material (sand pile) has some rigidity during embankment and consolidation. Second, In usual case of no rigidity as a paper drain without permeability during embankment and consolidation Third, Check up clay behavior when above the two cases carried out respectively. This FEM analysis is consisted with Biot's consolidation equation when it is used for Christian Boehmer's numerical technique. The main results are obtained from above the Analysis When sand drain has some rigidity, the lateral and vertical deformation of clay foundation is restrained considerable amount and .exhibited bearing capacity of load as a pile According to the foundation in drained condition and untrained condition, the results are much variable in this analysis method. Also, The behaviors of stress path and pore water pressure met our expectation during , consolidation. This analysis should be considered to put into use of sand drain and design in future.

  • PDF

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.