• Title/Summary/Keyword: sand compaction pile

Search Result 124, Processing Time 0.022 seconds

Case study of immersed tunnel for preservation of ecological environment (생태환경 보존을 위한 침매터널 사례연구)

  • Ahn, Sung Kwon;Lee, Hee Up
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.679-697
    • /
    • 2022
  • Having an awareness of the ongoing conception of Honam-Jeju, Korea-Japan, and Korea-China subsea tunnels for accommodating the railway, this paper investigates immersion tube tunnel technology, one of the underwater tunnel construction methods. This paper analyses the current status of immersed tube tunnels according to their location and function. This paper summarises the dredging methods and briefly introduces the muck disposal facility. Also introduced are the case studies where measures were taken to mitigate the impact of dredging on the surrounding marine environment. This paper also explains how the tunnel elements are connected underwater using an immersion joint. This paper classifies the foundation methods into bedding and ground improvement methods and provides summaries, including their environmental impact associated with drill cuttings and cementitious binders.

Stress Concentration Ratio of GCP Depending on the Mixing Ratio of Crushed Stone and Sand (GCP의 쇄석과 모래의 배합비 별 응력분담비)

  • Na, Seung-Ju;Kim, Min-Seok;Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.37-50
    • /
    • 2016
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for GCP design is dependent on the area replacement, surcharge pressure and depth. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. Little study has been done on the stress concentration ratio for the mixing ratio of gravel and sand. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and mixing ratio through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. The excess pore water pressure and stress concentration ratio of composite ground have been analyzed for both the area replacement ratio and the mixing ratio. Based on the previous research results, a range of stress concentration ratio obtained from the field tests, laboratory tests, numerical analysis on the GCP studies is found to be 1.7-3.2, 2.0-7.5 and 2.0-6.5, respectively. Based on the numerical analysis results, as the area replacement ratio increases, the stress concentration ratio increases up to 30% and then decreases at 40%. Also, the stress concentration ratio tends to increase up to 70:30 and then to decrease after 60:40.

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

Study on Optimum Design for Embankment Construction on Soft Ground Treated by SCP (SCP개량지반상에 성토시공 시 최적설계에 관한 연구)

  • Chae, Jong-gil;Park, Yeong-Mog;Jung, MinSu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.251-258
    • /
    • 2009
  • In this study, the optimum design conditions for embankment construction on soft clay layer improved by soil compaction pile (SCP) are discussed by comparing the practical design method to the reliability design which is based on the loss function and advanced first order second moment (AFOSM) method. The results are summarized as follows; 1) the relationship between safety factor and failure probability becomes heavy exponentially, failure probability decreases rapidly till 1% approximately until safety factor is smaller than 1.2 and after then, failure probability decrease gradually along the increase of the safety factor. The design safety factor of 1.2 may be the critical value that has been established on considering both relationships appropriately, 2) the safety factor of 1.15 at the minimum expected total cost is a little smaller than the design safety factor of 1.2 and the failure probability is about 1%, 3) the sensitivities of the ratio of stress share and the internal friction angle of sand is larger than the variables related the undrained shear strength of soft layer. This result means that the distribution characteristic of n and ${\phi}$ influences on the stability analysis considerably and they should be considered necessarily on stability analysis of embankment on soft layer improved by SCP, 4) new failure points of the input variables at the design safety factor of 1.2(below failure probability of 0.1~0.3%) is far 1~2 times of standard deviation from the initial design values of themselves.