• Title/Summary/Keyword: sand, sand concrete

Search Result 798, Processing Time 0.022 seconds

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Evaluation on Mix Characteristics of Concrete Using Fine Sand of Nakdong-River (낙동강 세사를 사용한 콘크리트의 배합특성 평가)

  • Bae, Su-Ho;Kim, Chang-Duk;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1481-1488
    • /
    • 2013
  • The purpose of this experimental research is to suggest a base data to utilize the fine sand of Nakdong-River actively as an alternative aggregate for concrete. For this purpose, after the typical fine sand samples were collected at the mid stream and down stream of main stream of Nakdong-River, the physical properties of them and the mix characteristics of concrete using those were estimated. As a result, it was observed from the test result that mix characteristics between concrete using fine sand and concrete using well-graded reference sand made little differences since unit water content and unit cement content of concrete using fine sand increased only a little than those of concrete using reference sand for specified compressive strength.

Properties of High Strength Concrete Using Fly Ash and Crushed Sand (플라이 애시와 부순모래를 사용한 고강도 콘크리트의 특성)

  • 이봉학;김동호;전인구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.107-116
    • /
    • 2002
  • The amount used of aggregates for concrete is increasing rapidly since the mid-1980s in Korea. The natural gravels from river are already displaced with crushed stone, and use of crushed sand as a substitute of natural river sands, also, is getting increased day by day. This paper is presented fur analysis on mechanical properties of high strength concrete using fly ash and crushed sand. The material functions in mixing design of concretes are various water-cement ratios(w/c) such as 0.25, 0.40, 0.55 and different replacement ratio of crushed sand to natural sands such as 0%, 20%, 40%, 60%. As a results, it has been shown that compressive strengths of concretes with W/C lower than 0.40 and 0.25 are higher than 400 kgf/$\textrm{cm}^2$ and 600 kgf/$\textrm{cm}^2$ respectively. It is also concluded that the results of rapid chloride permeability tests of concrete are evaluated to negligible. The conclusions of this study is that it is possible to use fly ash and crushed sand fur high strength concrete.

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

Development of high performance hybrid fiber reinforced concrete using different fine aggregates

  • Gupta, Hitesh;Bansal, Prem Pal;Sharma, Raju
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.19-32
    • /
    • 2021
  • In the present experimental study, the high performance hybrid fiber reinforced concrete (HPHFRC) is prepared using the Modified Andreasen and Andersen (A&A) particle packing model. Total of 16 trial mixes of HPHFRC with Indian standard sand (SS) and natural river sand (NS) are prepared to achieve the selection criteria (flow percent>150 and compressive strength>80 MPa). Based on the flow percent and compressive strength criteria, the selected mixes evaluated to study the effect of usage of natural river sand (NS) and the expensive Indian standard sand (SS) on the mechanical, durability, and microstructure property of designed HPHFRC. It has been found that the Modified A&A model is reliable to design the mix for HPHFRC with excellent mechanical, durability, and microstructure properties. In addition to that, a moderate difference in the mechanical and durability properties of NS contained HPHFRC and SS contained HPHFRC is found. Based on the obtained results of NS contained HPHFRC, it can be concluded that the use of natural river sand (NS) can be successfully adopted for the production of HPHFRC, resulted in a reduction of the production cost without compromising the excellent performance of HPHFRC.

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • 윤경구;이주형;홍창우;박제선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.153-161
    • /
    • 1998
  • Concrete structures has been deteriorated by and freezing the thawing due to temperature gap. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio. Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at -18$^{\circ}C$ and 4$^{\circ}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increases when the concrete contains AE agent and decreasing W/C ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

Shaft resistance of bored cast-in-place concrete piles in oil sand - Case study

  • Barr, L.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.5 no.2
    • /
    • pp.119-142
    • /
    • 2013
  • Pile load tests using Osterberg cells (O-cell) were conducted on cast-in-place concrete piles founded in oil sand fill and in situ oil sand at an industrial plant site in Fort McMurray, Alberta, Canada. Interpreted pile test results show that very high pile shaft resistance (with the Bjerrum-Burland or Beta coefficient of 2.5-4.5) against oil sand could be mobilized at small relative displacements of 2-3% of shaft diameter. Finite element simulations based on linear elastic and elasto-plastic models for oil sand materials were used to analyze the pile load test measurements. Two constitutive models yield comparable top-down load versus pile head displacement curves, but very different behaviour in mobilization of pile shaft and end bearing resistances. The elasto-plastic model produces more consistent matching in both pile shaft and end bearing resistances whereas the linear elastic under- and over-predicts the shaft and end bearing resistances, respectively. The mobilization of high shaft resistance in oil sand under pile load is attributed to the very dense and interlocked structure of oil sand which results in high matrix stiffness, high friction angle, and high shear dilation.

Durability Characteristics of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 내구특성에 관한 연구)

  • Park, Je-Seon;Yun, Kyong-Ku;Lee, Joo-Hyung;Yong, Sok-Ung
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.227-232
    • /
    • 1997
  • This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\circ}C$ and $4^{\circ}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that decreasing W/C ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row.

  • PDF

An Experimental Study on the Engineering Properties of Ductile Concrete Using PVA Fibers with Sand-Aggregate Ratio (잔골재율에 따른 PVA섬유를 사용한 고인성 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Min, Won-Gyoo;Hwang, Moon-Gyu;Youn, Hyen-Do;Nam, Jae-Hyun;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.389-392
    • /
    • 2006
  • In this study, I examined hardening and non-hardening of the DFRCC (Ductile Fiber Reinforced Cementitious Composites) according to sand-aggregate ratio and the diameter of PVA fiber to develope PVA fiber reinforced concrete with the feature of DFRCC. As a result of this study, the fresh properties of DFRC is similar regardless of sand-aggregate ratio. The bending stress of DFRC also increased as the sand-aggregate ratio increased. And the bending stress-displacement was the most stable when the PVA $100{\mu}m$ was used regardless of sand-aggregate ratio.

  • PDF

A Fundamental Study on the Strength Development of Antiwashout Underwater Concrete Using Sea Sand (해사를 사용한 수중불분리콘크리트의 강도발현에 관한 기초적 연구)

  • 이상명;최의식;김면식;이환우;백동일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.271-275
    • /
    • 1998
  • Recently, in the trend of using aggregate, it is common that coarse aggregate is replaced with crushed stone and fine aggregate is replaced with sea sand as a replacing aggregate. In this study, to judge the adaptability of using antiwashout underwater concrete, we used mixed sand (river sand : sea sand= 5 : 5) and changed W/C. After carrying out the research on the strength development of the compressive strength of specimen, tensile strength, fluxural strength which is produced and cured in the air and salt water, we founded that when W/C was low and the amount of AWA and SP were increased, the state of strength development was excellent.

  • PDF