• Title/Summary/Keyword: sand, sand concrete

Search Result 792, Processing Time 0.024 seconds

Copper or ferrous slag as substitutes for fine aggregates in concrete

  • Thomas, Job;Thaickavil, Nassif N.;Abraham, Mathews P.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.545-560
    • /
    • 2018
  • The ever-increasing cost of natural sand and the environmental impacts of extracting manufactured sand (quarry sand) calls for exploring the potential to use alternative materials as fine aggregates in concrete. Copper slag and ferrous slag are industrial by products obtained from the smelting process of copper and iron respectively. A large quantity of copper slag and ferrous slag end up being disposed as waste in landfills and this poses a serious threat to the environment. Copper slag and ferrous slag have similar physical and chemical properties as natural sand and also exhibit pozzolanic activity. This paper studies the technical feasibility of industrial by-products such as copper slag and ferrous slag to replace the fine aggregate in concrete by evaluating the workability, strength and durability characteristics of concrete. The test results indicate that the strength properties are not affected by 40% or 100% replacement of quarry sand with iron slag or copper slag. However, 40% replacement of quarry sand with iron slag or copper slag in concrete is recommended considering the durability aspects of concrete.

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

An Experimental Study on Corrosion Resistance of Concrete Using Sea Sane) (해사를 사용한 콘크리트의 내부식 성능에 관한 실험적 연구)

  • 배수호;윤상대;신의균;박광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.152-157
    • /
    • 1994
  • Due to the recent shortage of river sand resulting from a rapid growth of concrete construction, sea sand is increasingly used in stead. It is, however, well noted that non-washed sea sand used in reinforced concrete causes to corrode reinforcing steel and to incur cracks in concrete, and thus eventually result in damage to concrete. In this study, therefore, measeres that increase the quality of concrete were used to protect the reinforcing steel against corrosion in reinforced concrete construction, and then the corrosion resistance of reinforcing steel compared and analyzed from low quality concrete to high quality concrete.

  • PDF

Application of Waste Foundry Sand for Concrete-Based Products of Low Water Ratio (낮은 물비를 갖수용성 합성 절삭유의 재사용을 위한 한외여과 연구는 콘크리트 제품에 대한 폐주물사의 적용)

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Goo
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • This is the study for recycling waste foundry sand. Authors studied about main subject of grading of aggregate and three experimental items such as physical properties of waste foundry sand, optimum grading for concrete products of low water ratio, and quality variations of concrete products according to substitution proportion of fine aggregate as waste foundry sand. We were convinced of following results by experimental study. The first was that waste foundry sand was not fit as the aggregate for concrete because of bad qualities such as grading, unit weight, solid volume and passing 0.08 mm seive, so it is proper to composition using with other fine aggregetes. The second was that optimum grading is fineness modulus of 2.77 to 3.28 And the last is that optimum condition about substitution proportion as waste foundry sand is 10% fine aggregate.

  • PDF

Influence of the Type of Fine Aggregate on Drying Shrinkage and Durability for Concrete (잔골재 종류가 콘크리트의 건조수축과 내구성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Yoon, Gi-Won;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.249-255
    • /
    • 2006
  • Recently, interest grew on the quality of aggregates following the diminution of primary resources from river as to grow construction demand and the low grade of nature sand like sea sand. following, need is to diversify the supply sources of fine aggregates which are excessively relying on sea sand and urgency is to find as soon as possible aggregate resources that can substitute sea sand. On the other hand, various fine aggregates we utilized to produce concrete in the domestic construction fields. However, few studies have been systematically investigated on the effects of such fine aggregates on concrete properties. Therefore, this study examined the effects of comparatively widely used fine aggregates in the domestic construction fields on the shrinkage, durability and watertightness of concrete. Results revealed that drying shrinkage increases, and durability and watertightness degrades for concrete using crushed sand than natural fine aggregates like sea sand and river sand. Especially, the use of crushed sand exhibiting bad grain shape and grade was larger adverse effect on the quality of concrete. In addition, appropriate adjustment of the grain shape and grade during the blending of crushed sand exhibiting bad grain shape and grade with natural aggregates appeared to enhance the shrinkage and durability of concrete.

A study on the Strength Characteristics of Concrete Using Foundry Waste Sand (폐주물사를 사용한 콘크리트의 강도특성에 관한 연구)

  • 최연왕;최재진;김기형;김용직
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.237-240
    • /
    • 1999
  • This study was performed to analyze strength characteristics of concrete using FWS(foundry waste sand), as a way of study for reusing the FWS disused in the foundry as the fine aggregate for concrete. As the experimental results, the slump of concrete showed a decline with the increase of replacement ratio of FWS. The compressive strength of concrete made with FWS 25% replacement river sand showed higher value than that of concrete not containing FWS, but the flexural strength of concrete containing FWS was decreased 21% compared with that of concrete not containing FWS at age of 28days.

  • PDF

A Study on Physical and Particle Properties of Crushed Sand in Korea (국내 부순모래의 물리적 성질과 입자 특성에 관한 연구)

  • Yoon, Gi-Won;Kim, Ki-Hoon;Koh, Kyung-Taek;Lee, Jang-Hwa;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • Crushed sand is made by crushing the rocks artificially. With a wide shortage of natural river sand all over the region in Korea, demand for crushed sand are becoming increased. However, Informations as to crushed sand are insufficient. In this paper, the actual conditions of crushed sand related to producing and quality variation are investigated. 29 manufacturing company of crushed sand are reviewed. According to results, density of most crushed sand tested exceeded 2.5g/cm3, and absorption ratio meet the requirement of KS except one sample. For grain properties, passing amount of 0.08mm sieve satisfied the requirement of KS except one sample. Grain distribution of most crushed sand is estimated $54.26\%$. But 6 crushed sand sample did not meet the requirement of KS. Fineness modulus and grading are varied from manufacturing region. 18 samples of crushed sand among 29 samples deviated the minimum level of standard grading range by KS. Therefore, improvement of grain properties of crushed sand is urgently needed to manufacture better crushed sand.

  • PDF

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.

An Experimental study on the Manufacture and Mechanical Properties of concrete Utilizing Fly Ash and Crushed Sand (플라이애쉬와 부순모래를 이용한 콘크리트의 제조 및 역학적 특성에 관한 실험적 연구)

  • 박승범;오광진;호성수;강현선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.84-88
    • /
    • 1995
  • The results of an experimental study on manufacture and mechanical properties of concrete utilizing crushed sand and fly ash for construction materials are presented in theis paper. As the results show, the workability, compressive strength and freezing-thaw resistance were improved by proper contents of fly ash, replaced crushed sand, and air entraining agent. And the drying shinkage was decreased by proper contents of those. Also, the suitable weight contents of replacing ratio of crushed sand and weight ratio fly ash in concrete using crushed sand were in range of 30% and 15% respectively.

  • PDF

An Experimental Study on the Physical Properties of Mortar Using EEZ Sand and Crushed Sand (부순모래와 EEZ모래를 혼합사용한 모르타르의 기초물성에 관한 실험적 연구)

  • Park Jong-Ho;Jang Jae-Bong;Na Chul-Sung;Cho Bong-Suk;Kim Jae-Hwan;Kim Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.33-36
    • /
    • 2005
  • Recently, Trouble of sand supply is occurred according to exhaustion of natural sand resources. therefore, various measures are proposed for solution of trouble of sand supply. also the government settled trouble of sand supply through application of EEZ sand and crushed sand. but because both EEZ sand and crushed sand are poor against general sand, they lead to lowering of quality of ready-mixed concrete. Therefore, this study evaluated physical properties of mortar using EEZ sand and crushed sand and applied evaluation result to fundamental data The result of this study have shown that quality of mortar using EEZ sand and crushed sand independently is poor against general mortar. but, mortar flow and compressive strength is increased in case of mixing 222 sand and crushed sand properly.

  • PDF