• Title/Summary/Keyword: sampling interpolation

Search Result 179, Processing Time 0.022 seconds

GENERALIZED HERMITE INTERPOLATION AND SAMPLING THEOREM INVOLVING DERIVATIVES

  • Shin, Chang-Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.731-740
    • /
    • 2002
  • We derive the generalized Hermite interpolation by using the contour integral and extend the generalized Hermite interpolation to obtain the sampling expansion involving derivatives for band-limited functions f, that is, f is an entire function satisfying the following growth condition |f(z)|$\leq$ A exp($\sigma$|y|) for some A, $\sigma$ > 0 and any z=$\varkappa$ + iy∈C.

Improved Sampling Method For Volume Rendering (Volume Rendering를 위한 향상된 Sampling 방법)

  • 박재영;이병일;최흥국
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.213-216
    • /
    • 2000
  • 본 논문에서는 volume rendering 기법을 이용하여 2차원 MRI 영상들을 합성하여 3차원 영상 만들 때 보다 해상도를 높이기 위한 개선된 sampling방법을 소개한다 2차원 슬라이스 영상들이 3차원으로 재구성할 때 voxel 기반으로 렌더링을 하기 때문에 오브젝트의 내부 영역까지도 볼 수 있는 것이 volume rendering의 가장 큰 장점이다. 따라서 영상을 재구성하는 과정에서 보다 향상된 interpolation을 적용시켜서 공간 해상도를 향상시키면 보다 명확하게 오브젝트 내부 정보를 살펴 볼 수 있다. 본 논문에서는 nearest neighbor 이나 linear 같은 interpolation으로 sampling한 방법보다 cubic interpolation을 3차원 공간에서 적용 시켜서 보다 resampling이 잘 되도록 하여 해상도를 향상시켜 보았다. 이렇게 향상된 Interpolation 적용시켜서 렌더링할 때 얼마나 오브젝트 내부 영역이 잘 가시화가 되었는지 transfer function을 적용시켜서 오브젝트 내부 정보를 렌더링 해보았고, 임의의 축으로 오브젝트을 잘라서 2D 단면 영상으로 출력해 보았다. 보다 향상된 interpolation을 적용시켜서 resampling을 하면 영상 해상도가 개선되었음을 볼 수 있었다.

  • PDF

Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling (하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리)

  • Park, Jong-Hyun;Kang, Moon-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.

Reconstruction of the Undersampled Photoplethysmogram with Various Interpolation Methods (보간 방법에 따른 언더샘플링된 광용적맥파 복원 가능성 평가)

  • Shin, Hangsik;Kim, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1418-1423
    • /
    • 2016
  • The purpose of this research is to investigate the effect of sampling frequency on the photoplethysmography (PPG) and to evaluate the performance of interpolation methods for under-sampled PPG. We generated down-sampled PPG using 10 kHz-sampled PPG then evaluated waveshape changes with correlation coefficient. Correlation coefficient was significantly decreased at 50 Hz or below sampling frequency. We interpolated the down-sampled PPG using four interpolation method-linear, nearest, cubic spline and piecewise cubic Hermitt interpolation polynomial - then evaluated interpolation performance. As a result, it was shown that PPG waveform that was sampled over 20 Hz could be reconstructed by interpolation. Among interpolation methods, cubic spline interpolation showed the highest performance. However, every interpolation method has no or less effect on 5 Hz sampled PPG.

Efficient Estimation of Population Mean Using Centered Modified Systematic Sampling and Interpolation

  • Kim, Hyuk-Joo;Choi, Byoung-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.175-185
    • /
    • 2002
  • A method is proposed for efficiently estimating the mean of a population which has a linear trend. The proposed estimator is based on the centered modified systematic sampling method and the concept of interpolation. Using the expected mean square error criterion, it is shown that the proposed method is more efficient than conventional methods in most real cases.

A Study on Estimating Population Mean by Use of Interpolation and Extrapolation with Balanced Systematic Sampling

  • Kim, Hyuk-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.91-102
    • /
    • 1999
  • A new method is developed for estimating the mean of a population which has a linear trend. The suggested estimator is based on the balanced systematic sampling method and the concept of interpolation and extrapolation. The efficiency of the proposed method is compared with that of conventional methods.

  • PDF

Estimation of Population Mean Using Centered Modified Systematic Sampling and Interpolation

  • Kim, Hyuk-Joo;Choi, Byoung-Chul
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.17-24
    • /
    • 2001
  • A method is proposed for efficiently estimating the mean of a population which has a linear trend. The proposed estimator is based on the centered modified systematic sampling method and the concept or interpolation. Using the expected mean square error criterion, it is shown that the proposed method is more efficient than conventional methods in most real cases.

  • PDF

A Design and Implementation of Volume Rendering Program based on 3D Sampling (3차원 샘플링에 기만을 둔 볼륨랜더링 프로그램의 설계 및 구현)

  • 박재영;이병일;최흥국
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.494-504
    • /
    • 2002
  • Volume rendering is a method of displaying volumetric data as a sequence two-dimensional image. Because this algorithm has an advantage of visualizing structures within objects, it has recently been used to analyze medical images i.e, MRI, PET, and SPECT. In this paper. we suggested a method for creating images easily from sampled volumetric data and applied the interpolation method to medical images. Additionally, we implemented and applied two kinds of interpolation methods to improve the image quality, linear interpolation and cubic interpolation at the sampling stage. Subsequently, we compared the results of volume rendered data using a transfer function. We anticipate a significant contribution to diagnosis through image reconstruction using a volumetric data set, because volume rendering techniques of medical images are the result of 3-dimensional data.

  • PDF

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.