• Title/Summary/Keyword: sampling frequency

Search Result 1,498, Processing Time 0.029 seconds

Full-color Non-hogel-based Computer-generated Hologram from Light Field without Color Aberration

  • Min, Dabin;Min, Kyosik;Park, Jae-Hyeung
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.409-420
    • /
    • 2021
  • We propose a method to synthesize a color non-hogel-based computer-generated-hologram (CGH) from light field data of a three-dimensional scene with a hologram pixel pitch shared for all color channels. The non-hogel-based CGH technique generates a continuous wavefront with arbitrary carrier wave from given light field data by interpreting the ray angle in the light field to the spatial frequency of the plane wavefront. The relation between ray angle and spatial frequency is, however, dependent on the wavelength, which leads to different spatial frequency sampling grid in the light field data, resulting in color aberrations in the hologram reconstruction. The proposed method sets a hologram pixel pitch common to all color channels such that the smallest blue diffraction angle covers the field of view of the light field. Then a spatial frequency sampling grid common to all color channels is established by interpolating the light field with the spatial frequency range of the blue wavelength and the sampling interval of the red wavelength. The common hologram pixel pitch and light field spatial frequency sampling grid ensure the synthesis of a color hologram without any color aberrations in the hologram reconstructions, or any loss of information contained in the light field. The proposed method is successfully verified using color light field data of various test or natural 3D scenes.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

An Improved Joint Detection of Frame, Integer Frequency Offset, and Spectral Inversion for Digital Radio Mondiale Plus

  • Kim, Seong-Jun;Park, Kyung-Won;Lee, Kyung-Taek;Choi, Hyung-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.601-617
    • /
    • 2014
  • In digital radio broadcasting systems, long delays are incurred in service start time when tuning to a particular frequency because several synchronization steps, such as symbol timing synchronization, frame synchronization, and carrier frequency offset and sampling frequency offset compensation are necessary. Therefore, the operation of the synchronization blocks causes delays ranging from several hundred milliseconds to a few seconds until the start of the radio service after frequency tuning. Furthermore, if spectrum inversed signals are transmitted in digital radio broadcasting systems, the receivers are unable to decode them, even though most receivers can demodulate the spectral inversed signals in analog radio broadcasting systems. Accordingly, fast synchronization techniques and a method for spectral inversion detection are required in digital radio broadcasting systems that are to replace the analog radio systems. This paper presents a joint detection method of frame, integer carrier frequency offset, and spectrum inversion for DRM Plus digital broadcasting systems. The proposed scheme can detect the frame and determine whether the signal is normal or spectral inversed without any carrier frequency offset and sampling frequency offset compensation, enabling fast frame synchronization. The proposed method shows outstanding performance in environments where symbol timing offsets and sampling frequency offsets exist.

Low-Sampling Rate UWB Channel Characterization and Synchronization

  • Maravic, Irena;Kusuma, Julius;Vetterli, Martin
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.319-327
    • /
    • 2003
  • We consider the problem of low-sampling rate high-resolution channel estimation and timing for digital ultrawideband (UWB) receivers. We extend some of our recent results in sampling of certain classes of parametric non-bandlimited signals and develop a frequency domain method for channel estimation and synchronization in ultra-wideband systems, which uses sub-Nyquist uniform sampling and well-studied computational procedures. In particular, the proposed method can be used for identification of more realistic channel models, where different propagation paths undergo different frequency-selective fading. Moreover, we show that it is possible to obtain high-resolution estimates of all relevant channel parameters by sampling a received signal below the traditional Nyquist rate. Our approach leads to faster acquisition compared to current digital solutions, allows for slower A/D converters, and potentially reduces power consumption of digital UWB receivers significantly.

Design and Performance of a Direct RF Sampling Receiver for Simultaneous Reception of Multiband GNSS Signals (다중대역 GNSS 신호 동시 수신을 위한 직접 RF 표본화 수신기 설계 및 성능)

  • Choi, Jong-Won;Seo, Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 2016
  • In this paper, we design a direct radio frequency (RF) sampling receiver for multiband GNSS signals and demonstrate its performance. The direct RF sampling is a technique that does not use an analog mixer, but samples the passband signal directly, and all receiver processes are done in digital domain, whereas the conventional intermediate frequency (IF) receiver samples the IF band signals. In contrast to the IF sampling receiver, the RF sampling receiver is less complex in hardware, reconfigurable, and simultaneously converts multiband signals to digital signals with an analog-to-digital (AD) converter. The reconfigurability and simultaneous reception are very important in military applications where rapid change to other system is needed when a system is jammed by an enemy. For simultaneous reception of multiband signals, the sampling frequency should be selected with caution by considering the carrier frequencies, bandwidths, desired intermediate frequencies, and guard bands. In this paper, we select a sampling frequency and design a direct RF sampling receiver to receive multiband global navigation satellite system (GNSS) signals such as GPS L1, GLONASS G1 and G2 signals. The receiver is implemented with a commercial AD converter and software. The receiver performance is demonstrated by receiving the real signals.

Analysis of Current Control Stability using PI Control in Synchronous Reference Frame for Grid-Connected Inverter with LCL Filter (LCL 필터를 사용하는 계통연계형 인버터의 동기좌표계 PI 전류제어 안정도 해석)

  • Jo, Jongmin;Lee, Taejin;Yun, Donghyun;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.168-174
    • /
    • 2016
  • In this paper, current control using PI controller in the synchronous reference frame is analyzed through the relationship among bandwidth, resonance frequency, and sampling frequency in the grid-connected inverter with LCL filter. Stability is investigated by using bode plot in frequency domain and root locus in discrete domain. The feedback variable is the grid current, which is regulated by the PI controller in the synchronous reference frame. System delay is modeled as 1.5Ts, which contains computational and PWM modulator delay. Two resonance frequencies are given at 815 Hz and 3.16 kHz from LCL filter parameters. Sufficient phase and gain margins can be obtained to guarantee stable current control, in case that resonance frequency is above one-sixth of the sampling frequency. Unstable current control is performed when resonance frequency is below one-sixth of the sampling frequency. Analysis results of stability from frequency response and discrete response is the same regardless of resonance frequency. Finally, stability of current control based on theoretical analysis is clearly verified through simulation and experiment in grid-connected inverters with LCL filter.

Front-End Design for Underwater Communication System with 25 kHz Carrier Frequency and 5 kHz Symbol Rate (25kHz 반송파와 5kHz 심볼율을 갖는 수중통신 수신기용 전단부 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Park, Jin-Young;Kim, Sea-Moon;Park, Jong-Won;Lim, Young-Kon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.166-171
    • /
    • 2010
  • In this paper, the front-end of a digital receiver with a 25 kHz carrier frequency, 5 kHz symbol rate, and any excess-bandwidth is designed using two basic facts. The first is known as the uniform sampling theorem, which states that the sampled sequence might not suffer from aliasing even if its sampling rate is lower than the Nyquist sampling rate if the analog signal is a bandpass one. The other fact is that if the sampling rate is 4 times the center frequency of the sampled sequence, the front-end processing complexity can be dramatically reduced due to the half of the sampled sequence to be multiplied by zero in the demixing process. Furthermore, the designed front-end is simplified by introducing sub-filters and sub-sampling sequences. The designed front-end is composed of an A/D converter, which takes samples of a bandpass filtered signal at a 20 kHz rate; a serial-to-parallel converter, which converts a sampled bandpass sequence to 4 parallel sub-sample sequences; 4 sub-filter blocks, which act as a frequency shifter and lowpass filter for a complex sequence; 4 synchronized switches; and 2 adders. The designed front-end dramatically reduces the computational complexity by more than 50% for frequency shifting and lowpass filtering operations since a conventional front-end requires a frequency shifting and two lowpass filtering operations to get one lowpass complex sample, while the proposed front-end requires only four filtering operation to get four lowpass complex samples, which is equivalent to one filtering operation for one sample.

Modeling of the Sampling Effect in the P-Type Average Current Mode Control

  • Jung, Young-Seok;Kim, Marn-Go
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.59-63
    • /
    • 2011
  • This paper presents the modeling of the sampling effect in the p-type average current mode control. The prediction of the high frequency components near half of the switching frequency in the current loop gain is given for the p-type average current mode control. By the proposed model, the prediction accuracy is improved when compared to that of conventional models. The proposed method is applied to a buck converter, and then the measurement results are analyzed.

Population Dynamics and the Toxin of Anabaena in the Lower Naktong River (洛東江 下流城 濫藻 Anabaena의 個體群 變動 및 毒性 硏究)

  • Choi, Ae-Ran;Park, Jin-Hong;Lee, Jin-Ae
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 2002
  • Population dynamics of Anabaena and the anatoxin-a concentration were monitored with physicochemical parameters at 3 sites in the lower Naktong River from May to September in 2000. Total 4 species of Anabaena (A. flosaquae, A. smithii, A. ucrainica and A. mucosa) were identified with morphological characterisitcs. Anabaena flos-aquae was most abundant among the populations. The standing crop of Anabaena ranged from 10 to 11,220 cells · $ml^{-1}$ and biomass of Anabaena more 1,000 cells · $ml^{-1}$ was obseved once at St. Mulgeum and St. Seonam, twice at St. Hagueon out of total 9 samplings. There were not significant correlations between the standing crop of Anabaena and other physicochemical parameters such as temperature, nitrate, total nitrogen, phosphate, total phophorus and N/P ratios. The frequency of trichomes with akinetes was low and ranged from 0 to 4% in the total Anabaena population and A. smithii showed highest frequency of 2.8% among all species. The population at St. Seonam showed highest frequency of 1.4% among all sampling sties. The population in September showed the highest frequency of 3.0% among all sampling period. The frequency of trichomes with heterocysts was low and ranged from 1 to 87% inthe total Anabaena population and A. smithii showed highest frequency of 55.1% among all species. The population at St. Mulgeum showed highest frequency of 17.6% among all sampling sites. The population in August showed the highest frequency of 21.4% among all sampling period. The frequency of trichomes with akinetes and/or heterocysts was not related to all the physicochemical parameters of temperature, nitrate, total nitrogen, phosphate, total phosphorus and N/P ratios. The anatoxin-a concentations were determined in algal materials dominated by Microcystis and Anabaena from June though August by derivatization using 7-fluoro-4-nitro-2, 1,3-benzoxadiazole (NBD-F) and HPLC analysis with fluorimetric detection. All the concentrations were below the detection limit of 0.1 ㎍ · $l^{-1}$ in the present study.

The Statistical Model for Predicting Flood Frequency

  • Noh, Jae-Sik;Lee, Kil-Choon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.51-63
    • /
    • 1993
  • This study is to verify the applicability of statistical models in predicting flood frequency at the stage gaging stations of which the flow is under natural condition in the Han River basin. The results of the study show that the statistical flood frequency models were proven to be fairly reasonable to apply in practice, and also were compared with sampling variance to calibrate the statistical efficiency of the estimators of the T year floods Q(T) by two different flood frequency models. As a result, it was showed that for return periods greater than about T = 10 years the annual exceedance series estimators of Q(T) has smaller sampling variance than the annual maximum series estimators. It was showed that for the range of return periods the partial duration series estimators of !(T) has smaller sampling variance than the annual maximum series estimate only if the POT model contains at least 2N(N : record length) items or more in order to estimate Q(T) more efficiently than the ANNMAX model.

  • PDF