• Title/Summary/Keyword: salt spray cycles

Search Result 6, Processing Time 0.02 seconds

Degradation of roller compacted concrete subjected to low-velocity fatigue impacts and salt spray cycles

  • Gao, Longxin;Lai, Yong;Zhang, Huigui;Zhang, Jingsong;Zhang, Wuman
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.411-418
    • /
    • 2021
  • Roller compacted concrete (RCC) used in the island reef airport runway will be subjected to the coupling actions of the fatigue impacts and the salt spray cycles, which will accelerate the deterioration of runway concrete and even threaten the flight safety. A cyclic impact testing machine and a climatic chamber were used to simulate the low-velocity fatigue impact and the salt spray cycles, respectively. The physical properties, the microstructures and the porosity of RCC were investigated. The results show the flexural strength firstly increases and then decreases with the increase of the fatigue impacts and the salt spray cycles. However, the decrease in the flexural strength is significantly earlier than the compressive strength of RCC only subjected to the salt spray cycles. The chlorine, sulfur and magnesium elements significantly increase in the pores of RCC subjected to 30000 fatigue impacts and 300 salt spray cycles, which causes the decrease in the porosity of RCC. The coupling effects of the fatigue impacts and the salt spray cycles in the later period accelerates the deterioration of RCC.

Evaluation of the Corrosion Resistance of Plated Ni and Ni-Cr Layers on Fe Substrate by Using Salt Spray, CASS and EC Tests (철소지 위에 형성된 니켈 및 니켈-크롬 도금층의 염수분무, 캐스, 전해부식시험법을 이용한 내식성평가)

  • 신재호;이동훈;이재봉;신성호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.307-316
    • /
    • 2003
  • Salt spray, CASS(copper accelerated acetic salt spray) and EC(electrolytic corrosion) tests were performed in order to evaluate the corrosion resistance of plated Ni and Ni-Cr layers on Fe substrate. Compared with the conventional methods such as salt spray and CASS, the electrochemical method such as EC test may be beneficial in terms of test time span and quantitative accuracy. Furthermore, EC test can also become the alternative method to evaluate the resistance to corrosion of coatings by measuring the corrosion potentials of the coated layers in the electrolyte during the off-time of EC cycles. Compared with the corrosion potentials of pure iron, nickel, chromium, those potentials of coated layers can be used to anticipate the extent of corrosion. Results showed that in terms of the test time span, EC test gave 14 times and 21 times faster results than the salt spray test in cases of $5\mu\textrm{m}$ Ni and $20\mu\textrm{m}$ Ni plated layers, respectively. In addition, EC test also offered the shorter test time span than CASS test in cases of $5 \mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr, and $20\mu\textrm{m}$ Ni + $0.5\mu\textrm{m}$ Cr on Fe substrate by 78 times and 182 times, respectively. Therefore, EC test can be regarded as the better method to evaluate the resistance to corrosion of coated layers than the conventional methods such as salt spray and CASS.

An investigation of characteristics of Au plating for telecommunication components (통신기자재용 금도금 특성 분석 연구)

  • 한전건;강태만
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.6
    • /
    • pp.309-317
    • /
    • 1992
  • Evaluation of electroplated gold has been carried out to obtain the data base for electrical, mechanical and environmental properties for telecommunication component applications. Gold plating was performed to a various thickness of $0.1\mu\textrm{m}$ to 1.$25\mu\textrm{m}$ after Ni plating of $3\mu\textrm{m}$ on C52100 bronze. Electrical properties were evaluated by measuring contact resistance using 4-wire method under static contact and dynamic contact during wear. Reciprocating wear test was performed to study the wear behavior as well as failure of gold contacts. Environmental characteristics were evaluated by using salt spray testing and SO2 test. Hardness of soft gold film was measured to be 53KHN under 5g load. Friction coefficient was initially obtained to be 0.15 and 0.25 under 100g and 200g loads respectively, and then raised up to 0.8 with increasing reciprocating wear cycles. Static contact resistance was 2 to 3m$\Omega$ regardless of gold film thickness while drastic changes of contact resistance were occured upon stripping of the gold film during wear. The lifetime of contact wear showing stable contact resistance increased up to 6 times for $1\mu\textrm{m}$ thickness compared to that of$ 0.1\mu\textrm{m}$ thickness under 100g load. All gold plating appeared to be stable under salt atmosphere while only the gold plating over 1$\mu\textrm{m}$ was stable under SO2 atmosphere.

  • PDF

Reliability assessment test for heavy sluice gate of hydraulic cylinder (수문용 대형 유압실린더의 신뢰성 평가)

  • 이용범;현동수;김형의;이근호;정동수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2001.06a
    • /
    • pp.91-97
    • /
    • 2001
  • These Study are for the development of the reliability assessment test code and test equipment and test procedures of the heavy sluice gate hydraulic cylinder. Because there is no reliability test code for the heavy sluice gate hydraulic cylinder inside and outside of the country, the modified reliability test code is made reference for the related existing standards like as ISO, JIS, MIL, TUV, DIN, KS and etc. In this study, the novel method is proposed to evaluate efficiency of the heavy sluice gate hydraulic cylinder on the loading conditions and established the conditions of the acceleration life test to reduce the testing time and cycles. The testing equipments for life test, lode operating test, high and low temperature test and salt spray test have been established for 8 month, and the reliability tests are accomplished. The test results of the heavy sluice gate hydraulic cylinder which is produced and tested initially in Korea are satisfied the durability life cycle on the using conditions.

  • PDF

Development of Durable Reliability Assessment Methods for Heavy Duty Coatings

  • Kim, Seung-Jin;Jung, Ho;Yang, In-Mo;Tanaka, Takeyuki
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.155-163
    • /
    • 2005
  • Heavy duty coating are required to have minimum durable period of 15 years under average usage environment because these paints are coated with purpose of anti-corrosion, antifouling, plastering etc. Onto steel structures constructed upon land and sea and other ferrous structures of electric power generation plants, electricity transmission towers, large structures of various plants, etc. Therefore we tried to estimate heavy duty coating longevity through reliability evaluation method and used combined cyclic anti-conrrosion test method composed of drying, moisturizing and salt spray as for accelerated life test to estimate longevity. Accelerated life test hours to heavy duty coating of first grade (with longevity not less than 15 years) specification may be obtained from troubleless test hours $t_n=\frac{B_p}{n^{1/\beta}}\left[\frac{1n(1-CL)}{1n(1-p)} \right]^{1/\beta}=19.671$ (yr) where shape parameter $\beta=1.1$, confidence level CL=80 %, warranty life $B_{10}=15$ yr and sampling size n=10 (2 sets). Because acceleration factor {AF} found by accelerated test is 41.7, accelerated life test hours required may be represented about 4,132 hr so that if this amount of hours is converted to number of cycles(6 hr/cycle) of complex cycle corrosion resistance test then the amount is tantamount about 690 cycles. That means if there does not occur trouble failure (with defect factor sum not more than 20) during when there is performed 690 cycles of combined cyclic anti-corrosion test to heavy duty coating specimen then it signifies that there can be warranted longevity $B_{10}$ of 15 yr under condition of confidence level CL=80 %.

Corrosion Resistance of Cr-bearing Rebar to Macrocell Corrosion Caused by Concrete with Crack (피복 콘크리트의 균열 발생에 기인한 매크로셀 부식 환경하에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • This study was investigated to corrosion resistance of Cr-bearing rebars to macrocell corrosion caused by concrete with crack. Ten types of steel bars having different Cr contents were embedded in concretes with imitation crack. The corrosion resistance of the Cr-bearing rebar was examined by measuring half-cell potential, macrocell corrosion current, corrosion area and weight loss up to 105 cycles of salt spray testing. The results revealed that the Cr content required for corrosion resistance in a macrocell corrosion environment caused by chloride ion gap of $3kg/m^3$ was 9% or more. The corrosion-resisting performance of Cr-bearing rebar was particularly noticeable with a Cr content of 11% or more.