• Title/Summary/Keyword: salt spray corrosion

Search Result 140, Processing Time 0.024 seconds

Characteristics of Polyaniline Anti-Corrosive Coatings with Primer and Top Coating Resins (하도 및 상도 수지에 따른 폴리아닐린 방청도료의 특성)

  • Kim, Tae-Ok;Kong, Seung-Dae;Park, Jin-U
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.399-409
    • /
    • 2007
  • Characteristics of polyaniline anti-corrosive coatings with various primer coating resins(epoxy resin, urethane resin, and others) and top coating resins(epoxy and acrylic urethane resins) were investigated through adhesion, acid resistance, alkaline resistance, water resistance, and anti-corrosion tests. As a result, the anti-corrosive properties of the prepared coatings using polyaniline varied with the types of primer and top coating resins. In this condition, the properties of adhesion, chemical resistance, and water resistance were found to be very satisfactory when using emeraldine base (EB) of polyaniline blended with single-packaged urethane and acrylic urethane resins as the primer coatings, and using acrylic urethane resin as the top coatings. Also, the anti-corrosive function of these anti-corrosive coatings was well preserved for 1000 hr in the salt spray experiment.

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

Synthesis and Characterization of Hydrotalcite/Graphene Oxide Containing Benzoate for Corrosion Protection of Carbon Steel

  • Nguyen, Thuy Duong;Tran, Boi An;Vu, Ke Oanh;Nguyen, Anh Son;Trinh, Anh Truc;Pham, Gia Vu;To, Thi Xuan Hang;Phan, Thanh Thao
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • This work examined the corrosion protection performance of benzoate loaded hydrotalcite/graphene oxide (HT/GO-BZ) for carbon steel. HT/GO-BZ was fabricated by the co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, and scanning electronic microscopy. The corrosion inhibition action of HT/GO-BZ on carbon steel in 0.1 M NaCl solution was evaluated by electrochemical measurements. The benzoate content in HT/GO-BZ was determined by UV-Vis spectroscopy. Subsequently, the effect of HT/GO-BZ on the corrosion resistance of the water-based epoxy coating was investigated by the salt spray test. The obtained results demonstrated the intercalation of benzoate and GO in the hydrotalcite structure. The benzoate content in HT/GO-BZ was about 16%. The polarization curves of the carbon steel electrode revealed anodic corrosion inhibition activity of HT/GO-BZ and the inhibition efficiency was about 95.2% at a concentration of 3g/L. The GO present in HT/GO-BZ enhanced the inhibition effect of HT-BZ. The presence of HT/GO-BZ improved the corrosion resistance of the waterborne epoxy coating.

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Material Scientific Properties and Effects on Atmospheric Environment of Copper Rust Pigments (동록안료의 재료과학적 특성 및 대기환경 영향 평가)

  • Park, Ju Hyun;Kim, Myoung Nam;Park, Se Rin;Yu, Ji A;Kim, Su Kyoung;Lee, Sun Myung
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.361-376
    • /
    • 2020
  • Atacamite and Verdigris were studied material scientific properties and durability that are used for traditional green pigment in traditional art painting work and Dancheong. As a result of ingrediant analysis, K-AA and K-VA identified Atacamite and Hoganite (or Verdigris) respectively. In order to find a factor of depressing the stability of pigment, we examined UV radiant exposure test, CO2/NO2 gas corrosion test and salt spray test. Salt spray test damaged both samples which were formed salt particle on the surface of the samples and it makes color disability. Furthermore, the results of gas corrosion test that both pigments change color enough to be perceived by the naked eyes showed that an air pollutant NO2 gas is also considered to be a major damage factor. In the case of K-VA, Hoganite that is main component of sample changes Tenorite with turn black after accelerated UV radiant exposure test. The consequences of the atmospheric environment effect test of the two pigments, K-VA showed relatetively weaker than K-AA.

Effects of RF Power, Substrate Temperature and Gas Flow Ratio on the Mechanical Properties of WCx Films Deposited by Reactive Sputtering (반응성 스퍼터링법에서의 RF전력, 기판온도 및 가스유량비가 WCx막의 기계적 특성에 끼치는 효과)

  • Park Y. K.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.621-625
    • /
    • 2005
  • Effects of rf power, pressure, sputtering gas composition, and substrate temperature on the deposition rate of the $WC_x$ coatings were investigated. The effects of rf power and sputtering gas composition on the hardness and corrosion resistance of the $WC_x$ coatings deposited by reactive sputtering were also investigated. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) analyses were performed to determine the structures and compositions of the films, respectively. The hardnesses of the films were investigated using a nanoindenter, scanning electron microscopy, ana a salt-spray test, respectively. The deposition rate of the films was proportional to rf power and inversely proportional to the $CH_4$ content of $Ar/CH_4$ sputtering gas. The deposition rate linearly increased with increasing chamber pressure. The hardness of the $WC_x$ coatings Increased as rf power increased. The highest hardness was obtained at a $Ar/CH_4$ concentration of $10 vol.\%$ in the sputtering gas. The hardness of the $WC_x$ film deposited under optimal conditions was found to be much higher than that of the electroplated chromium film, although the corrosion resistance of the former was slightly lower than that of the latter.

The Biological Functionality of Electro-Galvanized Steels Coated with a Hybrid Composite Containing Pyrethroid

  • Jo, Du-Hwan;Kim, Myung-Soo;Kim, Jong-Sang;Oh, Hyun-Woo
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.74-80
    • /
    • 2018
  • The electronic industries require environmentally-friendly and highly functional materials to enhance the quality of human life. Home appliances require insect repellent steels that work to protect household microwave ovens from incurring damage by insects such as fire ants and cockroaches in tropical regions. Thus, POSCO has developed new types of functional steels, coated with an array of organic-inorganic hybrid composites on the steel surface, to cover panels in microwave ovens and refrigerators. The composite solution uses a fine dispersion of hybrid solution with polymeric resin, inorganic and a pyrethroid additive in aqueous media. The hybrid composite solution coats the steel surface, by using a roll coater and is cured using an induction curing furnace on both the continuous galvanizing line and the electro-galvanizing line. The new steels were evaluated for quality performances, salt spray test for corrosion resistance and biological performance for both insect repellent and antimicrobial activity. The new steels with organic-inorganic composite coating exhibit extraordinarily biological functionalities, for both insect repellent and antimicrobial activities for short and long term tests. The composite-coating solution and experimental results are discussed and suggest that the molecular level dispersion of insecticide on the coating layer is key to biological functional performances.

Study on the Effects of Oxidant on Chemical Passivation Treatment of Low Nickel Stainless Steel (저니켈 스테인리스강의 화학적 부동태막 형성에 산화제가 미치는 영향)

  • Choi, Jong-Beom;Lee, Kyung-Hwang;Yun, Yong-Sup
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • In this paper, effects of potassium permanganate, pottasium dichromate, sodium molybdate on lean duplex stainless steel were studied by GDOES, OCP, potentiodynamic curves. The stainless steels were chemically passivated in each nitric acid solutions containing 4wt.% oxidants for 1 hour. As a result, when potassium dichromate or sodium molybdate was added, content of Fe was decreased and content of Cr was increased. Consequently, corrosion resistance of passive film was increased. But in case of potassium permanganate was added, contrastively, content of Fe was increased and content of Cr was decreased. So corrosion resistance was decreased. Adding sodium molybdate in nitric acid for chemical surface treatment process was the most effective among oxidants and also it showed the most stable anti-corrosion in SST.

Study on the Physical Properties by Combining Epoxy and Acryl Electrodeposition Paints (에폭시와 아크릴 전착도료의 혼용성에 따른 물성 변화 연구)

  • Jung, Sung Soo;Yi, Dong Uk;Kim, Dong Won;Kim, Myung Hwan;Kwag, Sam Tag;Moon, Myung Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.3
    • /
    • pp.137-146
    • /
    • 2014
  • The important drawback of epoxy electrodeposition(ED) coatings is the lack of the weathering resistance caused by the structure of bisphenol A. To improve this yellowing phenomena, acryl ED coatings have been developed. Compared with the epoxy ED coatings, however, acryl ED coatings are relatively weak in the corrosion resistance and mechanical properties. The purpose of this study is complemented their drawbacks by mixing epoxy and acryl ED paints. The salt spray, accelerated weathering test(QUV) and cupping, bending, impact test were employed to investigate the corrosion resistance, weathering resistance, and mechanical properties of ED coatings. When the ratio of acryl to epoxy resin of ED coating is 0.33, the weathering resistances are appropriately improved in condition maintaining the corrosion resistance. It was shown that the weathering resistance for epoxy ED coating was adjusted by optimally mixing acryl ED paint.

A Study on the Measurement of Steel Corrosion in Mortar by TEM Method (TEM법에 의한 모르타르 중의 철근 부식 측정에 관한 연구)

  • Lee Sang-Ho;Han Jeong-Seb
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.59-65
    • /
    • 2006
  • Steel, as a reinforcing mechanism in concrete, provides the tensile strength that is lacking in concrete, alone, and the high alkaline environment (pH 12.5) in concrete offers satisfactory protection against most corrosion of the steel. However, the corrosion of reinforcing steel in concrete can occur by chloride attack or carbonation, and it can cause a loss of integrity a section and concrete failure through cracking and spalling. In this study, a transient electro magnetic method (TEM) of a nondestructive technique is adapted to study the measuring method of steel corrosion in mortar. The sensor was made of an enameled wire, with a diameter of 0.25mm and anacril. He sensor configuration used was a coincident loop type. The secondary electro motive force (2nd EMF) was measured with SIROTEMIII, which equipped the accelerator. The accelerator allowsthe transmitter to turn off approximately $10\sim15$ times faster than normal. The high-resolution time series, used for very shallow or a high resistivity investigation was selected. After steels were corroded by the salt spray, during 4, 8, 15 and 25 days, they were embedded in mortar. The content results acquired in this study are as follows. The variation of the secondary electro motive force (2nd EMF) was shown by the change of steel surface with different corrosion time steel. It was confirmed that measurement of steel corrosion in mortar by a transient electro-magnetic method (TEM) can be possible.