• Title/Summary/Keyword: salt replacement

Search Result 77, Processing Time 0.025 seconds

Effect of manufacturing process using superheated steam on the quality improvement of pickled radish product (과열증기를 이용한 무우절임 제품의 제조공정 설정 및 품질 개선효과)

  • Kim, Eunmi;Lim, Jeong-Ho;Choi, Yun-Sang;Jeon, Ki-Hong
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.600-607
    • /
    • 2017
  • This study was conducted to develop radish as a food product for home meal replacement using superheated steam (SHS). Also, the change of quality characteristics was studied during their storage. The radish cuts were treated with SHS for 0, 3, 5, and 7 min, respectively, followed by complete drying at $80^{\circ}C$ for 6 hours. The results showed that radishes restored with mixed solution (drinking water:sugar:vinegar:salt=2:1:0.8:0.1) were harder than those restored with drinking water. All radishes were stored at 5, 10 and $15^{\circ}C$ for 56 days to investigate the changes of quality characteristics during the storage. Radishes in the control group, restored with drinking water and stored at $15^{\circ}C$, were spoiled after 7 days of storage. The radish in the experimental group did not show any change in the water content; except an increase on the first day of storage. The hardness of radish decreased with an increase in the storage period. It was found that microbial growth was inhibited due to low pH of the mixed solution, in which radishes of the experimental group were immerse.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Petrological Characteristics and Nondestructive Deterioration Assessments for Foundation Stones of the Sebyeonggwan Hall in Tongyeong, Korea (통영 세병관 초석의 암석학적 특성 및 비파괴 손상평가)

  • Han, Doo Roo;Kim, Sung Han;Park, Seok Tae;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.199-212
    • /
    • 2021
  • The Sebyeonggwan Hall (National Treasure No. 305) is located on the Naval Headquarter of Three Provinces in Tongyeong, and it has partly undergone with several rebuilding, remodeling, repairing and restorations since it's the first establishment in Joseon Dynasty (AD 1605) of ancient Korea. This study focuses on 50 foundation stones that comprise the Sebyeonggwan. These stones are made of six rock types and currently have various shapes of the surface damages. As the foundation stones, the dominant rock type was dacitic lapilli tuffs, and provenance-based interpretation was performed to supply alternative stones for conservation. Most of the provenance rocks for foundation stones showed highly homogeneity with their corresponding stones of petrography, mineralogy and magnetic susceptibility. According to surface deterioration assessments, the most serious damages of the stones were blistering and scaling. The deterioration mechanism was identified through the analysis of inorganic contaminants, and the primary reason is considered salt weathering caused by sea breeze and other combined circumstances. Based on the mechanical durability of the stones, there was no foundation stone that required the replacement of its members attributed to the degradation of the rock properties, but conservation treatment is considered necessary to delay superficial damage. The foundation stones are characterized by a combined outcome of multiple petrological factors that caused physical damage to surfaces and internal defects. Therefore, it's required to diagnosis and monitoring the Sebyeonggwan regularly for long-term preservation.

Textural and Sensory Properties of Beef Jerky replaced Salt with Soybean Paste, Soy Sauce or Red Pepper Paste (소금(NaCl)을 된장, 간장 또는 고추장으로 대체한 우육포의 조직적 및 관능적 특성)

  • Lim, Hyun-Jung;Jung, Eun-Young;Kim, Gap-Don;Joo, Seon-Tea;Yang, Han-Sul
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.97-104
    • /
    • 2012
  • The aim of this study was to investigate the quality properties of beef jerky replaced salt (NaCl) with red pepper paste, soy sauce and soybean paste. The quality properties of beef jerky including water activity ($a_w$), pH, moisture content, protein content, color, shear force, texture profile analysis and sensory evaluations were investigated. The sliced beef samples were marinated at salt (control), soybean paste (T1), soy sauce (T2) and red pepper paste (T3) for 24 h and then dried at $70^{\circ}C$ for 8 h. The $a_w$ and moisture content varied from 0.88 to 0.79 and from 28.87% to 22.98%, respectively. All treatment samples showed higher final $a_w$ and moisture content than the control sample after drying for the 8 h (p<0.05). The protein content of T2 and T3 samples were lower than the control. Also, shear force and hardness value of all treatment samples had lower than the control (p<0.05). However, all treatment samples showed lower saltiness intensity than the control sample. Sensory panelists recorded greater flavor and texture scores to the samples with soy sauce replacement. Therefore, sensory panels found that the T2 samples had better overall acceptability scores than the other beef jerky samples (p<0.05).

A Study on the Applicability of Corrosion Inhibitor for Outdoor Copper Alloy

  • Shin, Jeong Ah;Wi, Koang Chul
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.259-271
    • /
    • 2018
  • Outdoor copper alloy is exposed to the atmospheric environment, accelerating corrosion progress compared with indoor copper alloy. In order to prevent corrosion, the outdoor copper alloy is coated with wax to block external corrosion factors. However, corrosion of the inside of the coating film is highly likely to continue without the internal corrosion prevention treatment. B.T.A, which is used as a copper alloy water-soluble corrosion inhibitor, has a high possibility of being harmful to the human body and is mainly used to treat excavated artifacts. This study had selected the water-soluble corrosion inhibitor, which was easier to use than the existing wax and B.T.A being used in corrosion inhibition treatment for outdoor copper alloy. A comparative study was conducted on B.T.A, which is a water-soluble corrosion inhibitor used on excavated artifacts, and $VCI^{(R)}$, $Rus^{(R)}$, and L-cys, an amino acid corrosion inhibitor, used for tin bronze test pieces. The experimental method was conducted for a certain period of time with the salt, acid, and air pollution affecting the corrosion of outdoor copper alloy. Based on experiment results, it was concluded that the best water - soluble copper alloy corrosion inhibitor in the atmospheric environment is $VCI^{(R)}$. and it could be considered to be applied in replacement of B.T.A due to its low harmfulness. In addition, $VCI^{(R)}$ is judged to serve as a corrosion inhibitor for outdoor copper alloy because it showed the best result even in the outdoor exposure test which is a real atmospheric environment.

A Fundamentals study on Heat Exchanger using Deep Ocean Water: Effects of Corrosion on Heat Transfer Performance (심층수 이용 열교환기 개발을 위한 기초연구: 열교환기 부식이 열교환기 성능에 미치는 영향)

  • Kwon, Young-Chul;Lee, Seok-Hyun;Huh, Cheol;Cho, Meang-Ik;Lee, Chang-Kyung;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5377-5384
    • /
    • 2013
  • This paper presents the effects of the tube materials and corrosion on the heat transfer performance of double-tube heat exchangers for the development of heat exchangers using deep sea water. Heat exchangers made of titanium, aluminum. stainless steel, iron, copper, and aluminum with electro-deposition coatings(Carbon black_$15{\mu}m$, Carbon black_$150{\mu}m$) were tested. Also, the heat transfer rate of each heat exchanger was calculated by using EES program. For the acceleration of corrosion by sea water, the temperature of sea water $70^{\circ}C$ and the concentration of salt 3.5% were considered. And the specimens were immersed in sea water during 6 weeks. From the above experiment and analysis, aluminum with electro-deposition coating(Carbon black_$150{\mu}m$) can be considered the most promising candidate for the replacement of titanium heat exchanger.

Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete (한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구)

  • Kim, Won-Jong;Kim, Won-Sik;Kim, Gyu-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate

  • Yan, Gongxing;Al-Mulali, Mohammed Zuhear;Madadi, Amirhossein;Albaijan, Ibrahim;Ali, H. Elhosiny;Algarni, H.;Le, Binh Nguyen;Assilzadeh, Hamid
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.393-411
    • /
    • 2022
  • A high-performance reactive powder concrete (RPC) has been readied alongside river sand, with 1.25 mm particle size when under the condition of 80C steam curing. As a heat and sound insulation, expanded perlite aggregate (EPA) provides economic advantages in building. Concrete containing EPA is examined in terms of cement types (CEM II 32.5R and CEM I 42.5R), doses (0, 2%, 4% and 6%) as well as replacement rates in this research study. The compressive and density of concrete were used in the testing. At the end of the 28-day period, destructive and nondestructive tests were performed on cube specimens of 150 mm150 mm150 mm. The concrete density is not decreased with the addition of more perlite (from 45 to 60 percent), since the enlarged perlite has a very low barrier to crushing. To get a homogenous and fluid concrete mix, longer mixing times for all the mix components are necessary due to the higher amount of perlite. As a result, it is not suggested to use greater volumes of this aggregate in RPC. In the presence of de-icing salt, the lightweight RPC exhibits excellent freeze-thaw resistance (mass is less than 0.2 kg/m2). The addition of perlite strengthens the aggregate-matrix contact, but there is no apparent ITZ. An increased compressive strength was seen in concretes containing expanded perlite powder and steel fibers with good performance.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

Effects of Application Amount of Organic Compound Fertilizer on Lettuce Growth and Soil Chemical properties under Plastic film house (시설재배지에서 유기복합비료 시용량에 따른 상추 생육 및 토양화학성에 미치는 영향)

  • Kim, Myeong-Suk;Park, Seong-Jin;Kim, Sung-Hyun;Hwang, Hyun-Young;Shim, Jae-Hong;Lee, Yun-Hae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.37-44
    • /
    • 2020
  • The Project supporting organic fertilizer started in 1999 as a national policy. In farmhouse, over application of mixed organic compound fertilizer(OC) caused salt accumulation in plastic film house soil. To replace inorganic fertilizer with OC fertilizer, this study was investigated the effect of OC application on yield and soil chemical properties for lettuce cultivation in plastic film house. The OC fertilizer was applied at 50(OC50+N50), 100(OC100), and 150(OC150) % level of the basal amount of nitrogen fertilizer in soil testing recommendation. And these were compared to NPK(nitrogen, phosphat, and potash fertilizer) and PK treatment. The yield of lettuce in OC100 was similar to that of NPK treatment. In OC 50, 100 and 150 treatments, pH had a tendency to increase than that of NPK treatment. Nitrate nitrogen(NO3-N) and electrical conductivity(EC) were similar to NPK treatment. These showed that nutrients from OC fertilizer were less likely to accumulate in soil than NPK. Also, use efficiency of nitrogen in OC100 treatment were similar to NPK treatment. These results suggest that OC application as the basal dressing at the 100% level could be best to prevent a nutrient accumulation of soil and to increase the yield and commercial quality for lettuce.