• 제목/요약/키워드: salt levels

검색결과 627건 처리시간 0.033초

Chitinase-producing Salinivibrio bacteria isolated from salt-fermented shrimp with antimicrobial and safety assessments

  • Le, Bao;Chung, Gyuhwa;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • 제61권3호
    • /
    • pp.233-238
    • /
    • 2018
  • Chitinases are glycosyl hydrolases which cleave the ${\beta}$-1,4 linkage of chitin into oligo or monomers of N-acetylglucosamine. These bacterial enzymes have been used for a wide range of applications in the food and pharmaceutical industries. In this study, we isolated two potential chitinolytic strains, BAO-01 and BAO-02, from salt-fermented shrimp, which were shown to belong to the genus Salinivibrio through genetic characterization using 16S rRNA. These isolates were gram-positive, rod-shaped, and non-spore forming. BAO-01 showed greater growth and chitinase activity than BAO-02 after the incubation at $37^{\circ}C$ for 4 days. Both strains grew on a wide range of carbon and nitrogen sources, pH values, temperatures, and salt levels. However, they showed minor biochemical differences. In addition, their antimicrobial activities against foodborne pathogens and antibiotic susceptibilities were evaluated. These Salinivibrio spp. did not show bioamine production, hemolytic activity, and mucin degradation. Therefore, the in vitro screening results suggested that these bacteria could be widely used as new candidates for chitin hydrolyzation and seafood fermentation.

멸치(Engraulis japonicus) 염장발효덧을 이용한 속성발효 고순도 멸치액젓의 제조 및 품질 (Processing and Quality Characteristics of Rapidly Fermented, High Purity Anchovy Engraulis japonicus Sauce with Salt Fermented Anchovy Material)

  • 박노현;이현진;김동환;김종일;오광수
    • 한국수산과학회지
    • /
    • 제55권3호
    • /
    • pp.278-283
    • /
    • 2022
  • To develop a value-added anchovy Engraulis japonicus sauce, we examined processing conditions and quality characteristics of rapidly fermented, high purity anchovy sauce (RPAS) by adding 30% (w/w) intermediate salt-fermented anchovy material. RPAS had higher total nitrogen and amino nitrogen contents, and lower salinity than traditional anchovy sauce (TAS). The total amino acid contents of RPAS and TAS were 17,626.8 and 12,808.2 mg/100 g, respectively, and the major amino acids were alanine, glutamic acid, lysine, cystine, valine, and leucine. The histamine contents of RPAS and TAS were 12.6 and 25.2 mg/100 g, respectively, and the protease activity levels were 0.851 and 0.595 unit/mg, respectively. These results demonstrate that RPAS was more flavorful, and could shorten the salt-fermentation period by more than half compared to TAS, and can serve as a high-end fish sauce.

Soybean koji와 Rice koji를 첨가하여 발효한 도루묵(Arctoscopus japonicus) 액젓의 상온 저장 중 이화학적 품질변화 (Changes in the Physiochemical Quality of Sailfin Sandfish Arctoscopus japonicus Sauces Fermented with Soybean Koji or Rice Koji during Storage at Room Temperature)

  • 전준영;임영선;이미향;김병목;정인학
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.101-108
    • /
    • 2016
  • We investigated changes in the physiochemical quality of sailfin sandfish sauces fermented with two kojis during long-term storage at room temperature. Four fish sauces, including a control, were prepared by salt-fermentation with soybean koji (S-koji) or rice koji (R-koji) after autolysis. During storage, for 12 months, the color and levels of amino acids, total volatile base nitrogen (T-VBN) and organic acids but not moisture, salt or total nitrogen levels or pH differed markedly according to fish sauce type. The total nitrogen level was highest in S-koji, but there was no difference in the rate of increase in amino acid levels among the four fish sauces during storage. The T-VBN, of autolysis and S-koji were significantly higher than those of the control and R-koji during the entire storage period (P<0.05). The initial organic acid level did not differ among the four fish sauces, whereas it was notably higher in R-koji than in the other sauces at the end of storage. Hunter L, a and b values decreased in all fish sauces with increasing storage time. In conclusion, soybean koji may enhance the levels of nitrogen compounds as well as T-VBN in fish sauce, while rice koji reduced the formation of excess T-VBN and increased organic acid levels during storage at room temperature.

Goat Meat Does Not Cause Increased Blood Pressure

  • Sunagawa, Katsunori;Kishi, Tetsuya;Nagai, Ayako;Matsumura, Yuka;Nagamine, Itsuki;Uechi, Shuntoku
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.101-114
    • /
    • 2014
  • While there are persistent rumors that the consumption of goat meat dishes increases blood pressure, there is no scientific evidence to support this. Two experiments were conducted to clarify whether or not blood pressure increases in conjunction with the consumption of goat meat dishes. In experiment 1, 24 Dahl/Iwai rats (15 weeks old, body weight $309.3{\pm}11.1$ g) were evenly separated into 4 groups. The control group (CP) was fed a diet containing 20% chicken and 0.3% salt on a dry matter basis. The goat meat group (GM) was fed a diet containing 20% goat meat and 0.3% salt. The goat meat/salt group (GS) was fed a diet containing 20% goat meant and 3% to 4% salt. The Okinawan mugwort (Artemisia Princeps Pampan)/salt group (GY) was fed a diet containing 20% goat meat, 3% to 4% salt and 5% of freeze-dried mugwort powder. The experiment 1 ran for a period of 14 weeks during which time the blood pressure of the animals was recorded. The GS, and GY groups consumed significantly more water (p<0.01) than the CP and GM groups despite the fact that their diet consumption levels were similar. The body weight of animals in the CP, GM, and GS groups was similar while the animals in the GY group were significantly smaller (p<0.01). The blood pressure in the GM group was virtually the same as the CP group throughout the course of the experiment. In contrast, while the blood pressure of the animals in the GS and GY group from 15 to 19 weeks old was the same as the CP group, their blood pressures were significantly higher (p<0.01) after 20 weeks of age. The GY group tended to have lower blood pressure than the GS group. In experiment 2, in order to clarify whether or not the increase in blood pressure in the GS group and the GY group in experiment 1 was caused by an excessive intake of salt, the effects on blood pressure of a reduction of salt in diet were investigated. When amount of salt in the diet of the GS and GY group was reduced from 4% to 0.3%, the animal's blood pressure returned to normotensive. These results indicate that, as in the case of chicken consumption, prolonged consumption of goat meat does not cause increased blood pressure, rather the large amount of salt used in the preparation of goat meat dishes is responsible for the increase in blood pressure.

염 환경하에서 근대(Beta vulgaris var. cicla)의 생장과 항산화효소(SOD, APX, GR)의 활성변화 (Changes of Growth and Antioxidative Enzyme(SOD, APX, GR) Activities of Spinach Beet(Beta vulgaris var. cicla) Under Saline Condition)

  • 배정진;추연식;송승달
    • 생명과학회지
    • /
    • 제13권5호
    • /
    • pp.658-667
    • /
    • 2003
  • 환경 스트레스에 대해 내성을 가지는 것으로 알려진 명아주과에 속하는 근대(지상부길이 15 cm)를 이용하여, 다양한 염 농도에서의 건물함량 측정을 통한 생장반응과 항산화 효소(SOD, APX, GR)의 효과를 밝히기 위하여 다양한 농도(0, 50, 200, 1000 mM NaCl)의 염을 처리한 후 24시간 동안의 효소의 활성변화를 측정하였다. 근대는 처리 2시간째 200 mM NaCl처리구 에서 SOD, APX, GR의 최대활성을 보였으며, 50 mM NaCl처리구에서 가장 낮은 활성을 나타내었다. PAGE에 의한 isoforms의 확인결과, 근대는 3개의 SOD isoforms(Fe-SOD, CuZn-SOD, Mn-SOD)를 함유하고 있었으며, major isoform은 CuZn-SOD로 밝혀졌다. APX의 경우, 9개의 bands 중 특별히 저분자 isoforms (No. 7,8)의 강한 발현양상을 보였다. SOD의 경우 50 mM NaCl처리에서 Mn-SOD isoform의 불활성을 보여 활성의 증감에 있어 Mn-SOD가 직접적인 연관성을 가질 것으로 생각된다. 근대의 항산화 효소는 염 처리후 단시간내 효소 활성의 증가양상(특별히 처리후 2시간째 200 mM NaCl처리구)을 보여, 고농도 염 환경하에서 항산화시스템의 빠른 작동을 통해 염스트레스에 의해 생성된 활성산소를 제거함으로써 염에 의한 산화적 스트레스에 대해 효과적으로 대처해 나가는 것으로 생각된다. 검색어-근대, 염, 활성산소, SOD, APX, GR.

A novel WD40 protein, BnSWD1, is involved in salt stress in Brassica napus

  • Lee, Sang-Hun;Lee, Jun-Hee;Paek, Kyung-Hee;Kwon, Suk-Yoon;Cho, Hye-Sun;Kim, Shin-Je;Park, Jeong-Mee
    • Plant Biotechnology Reports
    • /
    • 제4권2호
    • /
    • pp.165-172
    • /
    • 2010
  • Genes that are expressed early in specific response to high salinity conditions were isolated from rapeseed plant (Brassica napus L.) using an mRNA differential display method. Five PCR fragments (DD1.5) were isolated that were induced by, but showed different response kinetics to, 200 mM NaCl. Nucleotide sequence analysis and homology search revealed that the deduced amino sequences of three of the five cDNA fragments showed considerable similarity to those of ${\beta}$-mannosidase (DD1), tomato Pti-6 proteins (DD5), and the tobacco harpin-induced protein hin1 (DD4), respectively. In contrast, the remaining clones, DD3 and DD2, did not correspond to any substantial existing annotation. Using the DD3 fragment as a probe, we isolated a full-length cDNA clone from the cDNA library, which we termed BnSWD1 (Brassica napus salt responsive WD40 1). The predicted amino-acid sequence of BnSWD1 contains eight WD40 repeats and is conserved in all eukaryotes. Notably, the BnSWD1 gene is expressed at high levels under salt-stress conditions. Furthermore, we found that BnSWD1 was upregulated after treatment with abscisic acid, salicylic acid, and methyl jasmonate. Our study suggests that BnSWD1, which is a novel WD40 repeat-containing protein, has a function in salt-stress responses in plants, possibly via abscisic acid-dependent and/or -independent signaling pathways.

Determination of Nutrient Contents and In vitro Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

  • Boga, M.;Yurtseven, S.;Kilic, U.;Aydemir, S.;Polat, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권6호
    • /
    • pp.825-831
    • /
    • 2014
  • The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (EC)<4 dS/m; low salt: 4 dS/m>EC<8 dS/m, medium saline: 8 dS/m>EC<16 dS/m and high salt: 16 dS/m>EC) was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM), acid detergent fiber, digestible dry matter, dry matter intake (DMI) were affected by plant, salinity and plant${\times}$salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV), and DMI were affected by salinity and plant${\times}$salinity interaction. Mineral contents were affected by plant species, salinity and salinity${\times}$plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME), and net energy lactation ($NE_L$) were affected by plant and plant${\times}$salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.

Cross-Tolerance and Responses of Antioxidative Enzymes of Rice to Various Environmental Stresse

  • Kuk, Yong-In;Shin, Ji-San
    • 한국작물학회지
    • /
    • 제52권3호
    • /
    • pp.264-273
    • /
    • 2007
  • In order to examine the cross-tolerance of two chilling-tolerant cultivars (Donganbyeo and Heukhyangbyeo) and two chilling-susceptible cultivars (Hyangmibyeo and Taekbaekbyeo) to salt, paraquat, and drought, changes of physiological response and antioxidant enzymes were investigated. The seedlings were grown in a growth chamber until the 4-leaf stage. The seedlings were exposed to chilling at $5^{\circ}C$ for 3 days. For drought treatment, the seedlings were subjected to drought by withholding water from plants for 5 days. For paraquat study, plants were sprayed with $300{\mu}M$ paraquat. For the salt stress, the seedlings were transferred to the Hoagland's nutrient solution containing 0.6% (w/v) NaCl for 4 days. Chilling-tolerant cultivars showed cross-tolerant to other stresses, salt, paraquat, and drought in physiological parameters, such as leaf injury, chlorophyll a fluorescence, and lipid peroxidation. The baseline levels of antioxidative enzyme activities, catalase (CAT) and peroxidase (POX) activities in chilling-tolerant cultivars were higher than in the chilling-susceptible cultivars. However, there were no differences in ascorbate peroxidase (APX) and glutathione reductase (GR) activities between chilling-tolerant and -susceptible cultivars in untreated control. CAT activity in chilling-tolerant cultivars was higher than that in chilling-susceptible cultivars during chilling, salt, and drought treatments, but not during paraquat treatment. However, other antioxidative enzymes, APX, POX, and GR activities showed no significant differences between chilling-tolerant and -susceptible cultivars during chilling, salt, paraquat, and drought treatments. Thus, it was assumed that CAT contribute to cross-tolerance mechanism of chilling, salt, and drought in rice plants.

A New Insight of Salt Stress Signaling in Plant

  • Park, Hee Jin;Kim, Woe-Yeon;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • 제39권6호
    • /
    • pp.447-459
    • /
    • 2016
  • Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.

Mesocarbon microbead densified matrix graphite A3-3 for fuel elements in molten salt reactors

  • Wang, Haoran;Xu, Liujun;Zhong, Yajuan;Li, Xiaoyun;Tang, Hui;Zhang, Feng;Yang, Xu;Lin, Jun;Zhu, Zhiyong;You, Yan;Lu, Junqiang;Zhu, Libing
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1569-1579
    • /
    • 2021
  • This study aims to provide microstructural characterization for the matrix graphite which molten salt reactors (MSRs) use, and improve resistance to molten salt infiltration of the matrix graphite for fuel elements. Mesocarbon microbeads (MCMB) densified matrix graphite A3-3 (MDG) was prepared by a quasi-isostatic pressure process. After densification by MCMBs with average particle sizes of 2, 10, and 16 ㎛, the pore diameter of A3-3 decreased from 924 nm to 484 nm, 532 nm, and 778 nm, respectively. Through scanning electron microscopy, the cross-section energy spectrum and time-of-flight secondary ion mass spectrometry, resistance levels of the matrix graphite to molten salt infiltration were analyzed. The results demonstrate that adding a certain proportion of MCMB powders can improve the anti-infiltration ability of A3-3. Meanwhile, the closer the particle size of MCMB is to the pore diameter of A3-3, the smaller the average pore diameter of MDG and the greater the densification. As a matrix graphite of fuel elements in MSR was involved, the thermal and mechanical properties of matrix graphite MDG were also studied. When densified by the MCMB matrix graphite, MDGs can meet the molten salt anti-infiltration requirements for MSR operation.