Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0083

A New Insight of Salt Stress Signaling in Plant  

Park, Hee Jin (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center)
Kim, Woe-Yeon (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center)
Yun, Dae-Jin (Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center)
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Keywords
circadian clock; GIGANTEA; NaCl; salinity; salt overly sensitive pathway;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Harmer, S.L. (2009). The circadian system in higher plants. Annu. Rev. Plant Biol. 60, 357-377.   DOI
2 Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.-S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113.   DOI
3 Hedrich, R., and Neher, E. (1987). Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329, 833-836.   DOI
4 Hollister, J.D., Arnold, B.J., Svedin, E., Xue, K.S., Dilkes, B.P., and Bomblies, K. (2012). Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 8, e1003093.   DOI
5 Hong, S., Kim, S.A., Guerinot, M.L., and McClung, C.R. (2013). Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis. Plant Physiol. 161, 893-903.   DOI
6 HorvAth, E., Szalai, G., and Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. J. Plant Growth Regul. 26, 290-300.   DOI
7 Hotta, C.T., Gardner, M.J., Baek, S.J., Suhita, D., and Webb, A.A.R. (2007). Modulation of environmental responses of plants by circadian clocks. Plant Cell Env. 30, 333-349.   DOI
8 Howell, S.H. (2013). Endoplasmic Reticulum Stress Responses in Plants. Annu. Rev. Plant Biol. 64, 477-499.   DOI
9 Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 9789-9794.   DOI
10 Krebs, M., Beyhl, D., Gorlich, E., Al-Rasheid, K.A.S., Marten, I., Stierhof, Y.-D., Hedrich, R., and Schumacher, K. (2010). Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation. Proc. Natl. Acad. Sci. USA 107, 3251-3256.   DOI
11 Kreps, J.A., Wu, Y., Chang, H.-S., Zhu, T., Wang, X., and Harper, J.F. (2002). Transcriptome Changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129-2141.   DOI
12 Krishnamurthy, A., and Rathinasabapathi, B. (2013). Auxin and its transport play a role in plant tolerance to arsenite-induced oxidative stress in Arabidopsis thaliana. Plant Cell Env. 36, 1838-1849.   DOI
13 Kronzucker, H.J., and Britto, D.T. (2011). Sodium transport in plants: a critical review. New Phytol. 189, 54-81.   DOI
14 Kurepa, J., Smalle, J., Va, M., Montagu, N., and Inze, D. (1998). Oxidative stress tolerance and longevity in Arabidopsis: the lateflowering mutant gigantea is tolerant to paraquat. Plant J. 14, 759-764.   DOI
15 Lee, S.C., Lan, W.-Z., Kim, B.-G., Li, L., Cheong, Y.H., Pandey, G.K., Lu, G., Buchanan, B.B., and Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc. Natl. Acad. Sci. USA 104, 15959-15964.   DOI
16 Legnaioli, T., Cuevas, J., and Mas, P. (2009). TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought. EMBO J. 28, 3745-3757.   DOI
17 Li, K., Wang, Y., Han, C., Zhang, W., Jia, H., and Li, X. (2007). GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regul. 53, 195-206.   DOI
18 Bendix, C., Mendoza, J.M., Stanley, D.N., Meeley, R., and Harmon, F.G. (2013). The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant Cell Environ. 36, 1379-1390.   DOI
19 BarragAn, V., Leidi, E.O., Andres, Z., Rubio, L., De Luca, A., FernAndez, J.A., Cubero, B., and Pardo, J.M. (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24,1127-1142.   DOI
20 Batelli, G., Verslues, P.E., Agius, F., Qiu, Q., Fujii, H., Pan, S., Schumaker, K.S., Grillo, S., and Zhu, J.-K. (2007). SOS2 promotes salt tolerance in part by interacting with the vacuolar $H^+$- ATPase and upregulating its transport activity. Mol. Cell Biol. 27, 7781-7790.   DOI
21 Bianco, C., and Defez, R. (2009). Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acidoverproducing Sinorhizobium meliloti strain. J. Exp. Bot. 60, 3097-3107.   DOI
22 Black, R. (1960). Effects of naci on the ion uptake and growth of Atriplex vesicaria Heward. Aust. J. Biol. Sci. 13, 249-266.   DOI
23 BlAzquez, M.A., Trenor, M., and Weigel, D. (2002). Independent control of gibberellin biosynthesis and flowering time by the circadian clock in Arabidopsis. Plant Physiol. 130, 1770-1775.   DOI
24 Bleecke, A.B., and Patterson, S.E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9, 1169-1179.   DOI
25 Blokhina, O., Virolainen, E., and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179-194.   DOI
26 Bohnert, H.J., and Jensen, R.G. (1996). Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14, 89-97.   DOI
27 Dodd, A.N., Jakobsen, M.K., Baker, A.J., Telzerow, A., Hou, S.-W., Laplaze, L., Barrot, L., Scott Poethig, R., Haseloff, J., and Webb, A.A.R. (2006). Time of day modulates low-temperature $Ca^{2+}$ signals in Arabidopsis. Plant J. 48, 962-973.   DOI
28 Dietz, K.-J. (2003). Plant peroxiredoxins. Annu. Rev. Plant Biol. 54, 93-107.   DOI
29 Dodd, A.N., Salathia, N., Hall, A., Kevei, E., Toth, R., Nagy, F., Hibberd, J.M., Millar, A.J., and Webb, A.A.R. (2005a). Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630-633.   DOI
30 Dodd, A.N., Love, J., and Webb, A.A.R. (2005b). The plant clock shows its metal: circadian regulation of cytosolic free $Ca^{2+}$. Trends Plant Sci. 10, 15-21.   DOI
31 Dodd, A.N., Gardner, M.J., Hotta, C.T., Hubbard, K.E., Dalchau, N., Love, J., Assie, J.-M., Robertson, F.C., Jakobsen, M.K., Goncalves, J., et al. (2007). The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318, 1789-1792.   DOI
32 Dong, H., Zhen, Z., Peng, J., Chang, L., Gong, Q., and Wang, N.N. (2011). Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J. Exp. Bot. 62, 4875-4887.   DOI
33 Ducrocq, S., Madur, D., Veyrieras, J.-B., Camus-Kulandaivelu, L., Kloiber-Maitz, M., Presterl, T., Ouzunova, M., Manicacci, D., and Charcosset, A. (2008). Key impact of Vgt1 on flowering time adaptation in maize: Evidence from association mapping and ecogeographical information. Genetics 178, 2433-2437.   DOI
34 Eimert, K., Wang, S.M., Lue, W.I., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7, 1703-1712.   DOI
35 Jiang, X., Leidi, E.O., and Pardo, J.M. (2010). How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav. 5, 792-795.   DOI
36 Jain, M., and Khurana, J.P. (2009). Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 276, 3148-3162.   DOI
37 Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., and Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced $K^+$ loss via a GORK channel. J. Exp. Bot. 64, 2255-2268.   DOI
38 Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., and Li, X. (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol. Plant. 6, 275-286.   DOI
39 Jibran, R., Hunter, D., and Dijkwel, P. (2013). Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol. Biol. 82, 1-15.   DOI
40 Jung, C., and Muller, A.E. (2009). Flowering time control and applications in plant breeding. Trends Plant Sci. 14, 563-573.   DOI
41 Jung, J.-H., Seo, Y.-H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.-H., and Park, C.-M. (2007). The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736-2748.   DOI
42 Kar, R.K. (2011). Plant responses to water stress: Role of reactive oxygen species. Plant Signal. Behav. 6, 1741-1745.   DOI
43 Cao, S., Ye, M., and Jiang, S. (2005). Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep. 24, 683-690.   DOI
44 Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N.P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91-94.   DOI
45 Adams, P., Nelson, D.E., Chmara, W., Bohnert, H.J., and Griffiths H. (1998). Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138, 171-190.   DOI
46 Ali, Z., Park, H.C., Ali, A., Oh, D.-H., Aman, R., Kropornicka, A., Hong, H., Choi, W., Chung, W.S., Kim, W.-Y., et al. (2012). TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows $K^+$ specificity in the presence of NaCl. Plant Physiol. 158, 1463-1474.   DOI
47 Bohnert, H.J., and Cushman, J.C. (2000). The ice plant cometh: lessons in abiotic stress tolerance. J. Plant Growth Regul. 19, 334-346.   DOI
48 Bohnert, H.J., Nelson, D.E., and Jensen, R.G. (1995). Adaptations to environmental stresses. Plant Cell 7, 1099-1111.   DOI
49 Cao, S., Jiang, S., and Zhang, R. (2006). The role of GIGANTEA gene in mediating the oxidative stress response and in Arabidopsis. Plant Growth Regul. 48, 261-270.   DOI
50 Cao, S.Q., Song, Y.Q., and Su, L. (2007a). Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biol. Plant 51, 359-362.   DOI
51 Cao, W.-H., Liu, J., He, X.-J., Mu, R.-L., Zhou, H.-L., Chen, S.-Y., and Zhang, J.-S. (2007b). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707-719.
52 Cheong, M., and Yun, D.-J. (2007). Salt-stress signaling. J. Plant Biol. 50, 148-155.   DOI
53 Cheong, Y.H., Kim, K.-N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003). CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833-1845.   DOI
54 Chung, J.-S., Zhu, J.-K., Bressan, R.A., Hasegawa, P.M., and Shi, H. (2008). Reactive oxygen species mediate $Na^+$-induced SOS1 mRNA stability in Arabidopsis. Plant J. 53, 554-565.
55 Covington, M.F., and Harmer, S.L. (2007). The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS One 5, e222.
56 Flowers, T.J., and Colmer, T.D. (2008). Salinity tolerance in halophytes. New Phytol. 179, 945-963.   DOI
57 Etchegaray, J.-P., Lee, C., Wade, P.A., and Reppert, S.M. (2003). Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177-182.   DOI
58 Farre, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., and Kay, S.A. (2005). Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47-54.   DOI
59 Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. Bot. 55, 307-319.   DOI
60 Flowers, T.J., Troke, P.F., and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89-121.   DOI
61 Flowers, T., Galal, H., and Bromham, L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol. 37, 604-612.   DOI
62 Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18, 4679-4688.   DOI
63 Fowler, S.G., Cook, D., and Thomashow, M.F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137, 961-968.   DOI
64 Fricke, W., Akhiyarova, G., Wei, W., Alexandersson, E., Miller, A., Kjellbom, P.O., Richardson, A., Wojciechowski, T., Schreiber, L., Veselov, D., et al. (2006). The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 57, 1079-1095.   DOI
65 Kende, H., and Zeevaart, J.A. (1997). The five "classical" plant hormones. Plant Cell 9, 1197-1210.   DOI
66 Katiyar-Agarwal, S., Zhu, J., Kim, K., Agarwal, M., Fu, X., Huang, A., and Zhu, J.-K. (2006). The plasma membrane $Na^+$/$H^+$ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 103, 18816-18821.   DOI
67 Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H.J. (2001). Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13, 889-905.   DOI
68 Kellermeier, F., Chardon, F., and Amtmann, A. (2013). Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. Plant Physiol. 161, 1421-1432.   DOI
69 Ketchum, K., and Poole, R. (1991). Cytosolic calcium regulates a potassium current in corn (Zea mays) protoplasts. J. Membr. Biol. 119, 277-288.   DOI
70 Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z. K., Osakabe, Y., Fujita, Y., Mizoi, J., Shinozaki, K., et al. (2009). The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol. 151, 2046-2057.   DOI
71 Kim, B.-G., Waadt, R., Cheong, Y.H., Pandey, G.K., Dominguez-Solis, J.R., Schultke, S., Lee, S.C., Kudla, J., and Luan, S. (2007a). The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J. 52, 473-484.   DOI
72 Kim, D.-W., Shibato, J., Agrawal, G.K., Fujihara, S., Iwahashi, H., Kim, D.H., Shim, I.-S., and Rakwal, R. (2007b). Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol. Cells 24, 45-59.
73 de Azevedo Neto, A.D., Prisco, J. T., Eneas-Filho, J., Abreu, C.E.B. de, and Gomes-Filho, E. (2006). Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salttolerant and salt-sensitive maize genotypes. Env. Exp. Bot. 56, 87-94.   DOI
74 Andres, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13, 627-639.   DOI
75 Ashley, M.K., Grant, M., and Grabov, A. (2006). Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57, 425-436.   DOI
76 Aukerman, M. J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.   DOI
77 Bajguz, A., and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47, 1-8.   DOI
78 Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia, M., Zanor, M.-I., Kohler, B., and Mueller-Roeber, B. (2010). A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during saltpromoted senescence. Plant J. 62, 250-264.   DOI
79 Barajas-Lopez, J. de D., Serrato, A.J., Cazalis, R., Meyer, Y., Chueca, A., Reichheld, J.P., and Sahrawy, M. (2011). Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor. J. Exp. Bot. 62, 2039-2051.   DOI
80 Barba-Espin, G., Clemente-Moreno, M.J., Alvarez, S., Garcia-Legaz, M.F., HernAndez, J.A., and Diaz-Vivancos, P. (2011). Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol. 13, 909-917.   DOI
81 Crepy, M., Yanovsky, M.J., and Casal, J.J. (2007). Blue rhythms between GIGANTEA and phytochromes. Plant Signal. Behav. 2, 530-532.   DOI
82 Covington, M., Maloof, J., Straume, M., Kay, S., and Harmer, S. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 9, R130.   DOI
83 Craig Plett, D., and Moller, I.S. (2010). $Na^+$ transport in glycophytic plants: what we know and would like to know. Plant Cell Env. 33, 612-626.   DOI
84 Cramer, G.R., and Jones, R.L. (1996). Osmotic stress and abscisic acid reduce cytosolic calcium activities in roots of Arabidopsis thaliana. Plant Cell Env. 19, 1291-1298.   DOI
85 Dalchau, N., Baek, S.J., Briggs, H.M., Robertson, F.C., Dodd, A.N., Gardner, M.J., Stancombe, M.A., Haydon, M.J., Stan, G.-B., Goncalves, J.M., et al. (2011). The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose. Proc. Natl. Acad. Sci. USA 108, 5104-5109.   DOI
86 Dassanayake, M., Oh, D.-H., Haas, J.S., Hernandez, A., Hong, H., Ali, S., Yun, D.-J., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., et al. (2011). The genome of the extremophile crucifer Thellungiella parvula. Nat Genet. 43, 913-918.   DOI
87 David, K.M., Armbruster, U., Tama, N., and Putterill, J. (2006). Arabidopsis GIGANTEA protein is post-transcriptionally regulated by light and dark. FEBS Lett. 580, 1193-1197.   DOI
88 DeWald, D.B., Torabinejad, J., Jones, C.A., Shope, J.C., Cangelosi, A.R., Thompson, J.E., Prestwich, G.D., and Hama, H. (2001). Rapid accumulation of phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate correlates with calcium mobilization in salt-stressed Arabidopsis. Plant Physiol. 126, 759-769.   DOI
89 Gemes, K., Poor, P., HorvAth, E., Kolbert, Z., Szopko, D., Szepesi, A., and Tari, I. (2011). Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiol. Plant 142, 179-192.   DOI
90 Fujimori, T., Sato, E., Yamashino, T., and Mizuno, T. (2005). PRR5 (PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 69, 426-430.   DOI
91 Gepstein, S., Sabehi, G., Carp, M.-J., Hajouj, T., Nesher, M.F.O., Yariv, I., Dor, C., and Bassani, M. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36, 629-642.   DOI
92 Ghassemi, F., Jakeman, A.J., and Nix, H.A. (1995). "Salinisation of land and water resources: Human causes, extent, management, and case studies," (Wallingford, England: CAB international).
93 Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930.   DOI
94 Graf, A., Schlereth, A., Stitt, M., and Smith, A.M. (2010). Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proc. Natl. Acad. Sci. USA 107, 9458-9463   DOI
95 Hanikenne, M., Kroymann, J., Trampczynska, A., Bernal, M., Motte, P., Clemens, S., and Kramer, U. (2013). Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet. 9, e1003707.   DOI
96 Hao, L., Zhao, Y., Jin, D., Zhang, L., Bi, X., Chen, H., Xu, Q., Ma, C., and Li, G. (2012). Salicylic acid-altering Arabidopsis mutants response to salt stress. Plant Soil. 354, 81-95.   DOI
97 Kim, W.-Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.-Y., Perez-Hormaeche, J., Quintero, F.J., Shin, G., Kim, M.R., Qiang, Z., et al. (2013). Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352.   DOI
98 Kim, W.-Y., Fujiwara, S., Suh, S.-S., Kim, J., Kim, Y., Han, L., David, K., Putterill, J., Nam, H.G., and Somers, D.E. (2007c). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356-360.   DOI
99 Kim, W.-Y., Salome, P.A., Fujiwara, S., Somers, D.E., and McClung, C.R. (2010). Chapter 19-Characterization of pseudo-response regulators in plants. In methods enzymol. Simon, Melvin I., Crane, Brian R., and Crane, Alexandrine eds., (Academic Press), pp. 357-378.
100 Kim, Y., Yeom, M., Kim, H., Lim, J., Koo, H. J., Hwang, D., Somers, D., and Nam, H.G. (2012). GIGANTEA and EARLY FLOWERING 4 in Arabidopsis exhibit differential phase-specific genetic influences over a diurnal cycle. Mol. Plant 5, 678-687.   DOI
101 Kinnunen, P.K.J. (2000). Lipid bilayers as osmotic response elements. Cell. Physiol. Biochem. 10, 243-250.   DOI
102 Konig, S., Mosblech, A., and Heilmann, I. (2007). Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J. 21, 1958-1967.   DOI
103 Kopittke, P. (2012). Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions. Plant Soil. 352, 353-362.   DOI
104 Krasensky, J., and Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593-1608.   DOI
105 Wu, Y., Ding, N., Zhao, X., Zhao, M., Chang, Z., Liu, J., and Zhang, L. (2007). Molecular characterization of PeSOS1: the putative $Na^+$/$H^+$ antiporter of Populus euphratica. Plant Mol. Biol. 65, 1-11.   DOI
106 Wang, W., Barnaby, J.Y., Tada, Y., Li, H., Tor, M., Caldelari, D., Lee, D., Fu, X.-D., and Dong, X. (2011). Timing of plant immune responses by a central circadian regulator. Nature. 470, 110-114.   DOI
107 Weigel, D. (2012). Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol. 158, 2-22.   DOI
108 Wilkins, O., Brautigam, K., and Campbell, M.M. (2010). Time of day shapes Arabidopsis drought transcriptomes. Plant J. 63, 715-727.   DOI
109 Wu, H.-J., Zhang, Z., Wang, J.-Y., Oh, D.-H., Dassanayake, M., Liu, B., Huang, Q., Sun, H.-X., Xia, R., Wu, Y., et al. (2012). Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc. Natl. Acad. Sci. USA 109, 12219-12224.   DOI
110 Xu, X., Hotta, C.T., Dodd, A.N., Love, J., Sharrock, R., Lee, Y.W., Xie, Q., Johnson, C.H., and Webb, A.A.R. (2007). Distinct light and clock modulation of cytosolic free $Ca^{2+}$ oscillations and rhythmic chlorophyll a/b binding protein2 promoter activity in Arabidopsis. Plant Cell 19, 3474-3490.   DOI
111 Xu, H., Jiang, X., Zhan, K., Cheng, X., Chen, X., Pardo, J.M., and Cui, D. (2008). Functional characterization of a wheat plasma membrane $Na^+$/$H^+$ antiporter in yeast. Arch. Biochem. Biophys. 473, 8-15.   DOI
112 Xu, X., Graeff, R., Xie, Q., Gamble, K.L., Mori, T., and Johnson, C. H. (2009). Comment on "The Arabidopsis circadian clock incorporates a cADPR-based feedback loop." Science. 326, 230-230.
113 Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., and Shigeoka, S. (2004). Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J. 37, 21-33.   DOI
114 Yang, Q., Chen, Z.-Z., Zhou, X.-F., Yin, H.-B., Li, X., Xin, X.-F., Hong, X.-H., Zhu, J.-K., and Gong, Z. (2009). Overexpression of sos (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2, 22-31.   DOI
115 Yensen, N. (2006). Halophyte uses for the twenty-first century. In ecophysiology of high salinity tolerant plants tasks for vegetation science., M.A. Khan and D. Weber eds. (Springer Netherlands), pp. 367-396.
116 Yeo, A.R., and Flowers, T.J. (1980). Salt tolerance in the halophyte Suaeda maritima L. Dum.: Evaluation of the effect of salinity upon growth. J. Exp. Bot. 31, 1171-1183.   DOI
117 Yuan, S., and Lin, H.-H. (2008). Role of salicylic acid in plant abiotic stress. Z. Naturforsch 63, 313-320.
118 Zhai, S.-M., Gao, Q., Xue, H.-W., Sui, Z.-H., Yue, G.-D., Yang, A.-F., and Zhang, J.-R. (2012). Overexpression of the phosphatidylinositol synthase gene from Zea mays in tobacco plants alters the membrane lipids composition and improves drought stress tolerance. Planta 235, 69-84.   DOI
119 Zhang, H.-X., and Blumwald, E. (2001). Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotech. 19, 765-768.   DOI
120 Zhang, J., Jia, W., Yang, J., and Ismail, A.M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res. 97, 111-119.   DOI
121 Zhu, J.-K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273.   DOI
122 Zhang, J., Lu, Y., Yuan, Y., Zhang, X., Geng, J., Chen, Y., Cloutier, S., McVetty, P.B.E., and Li, G. (2009). Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol. Biol. 69, 553-563.   DOI
123 Zhou, S., Hu, W., Deng, X., Ma, Z., Chen,, L., Huang, C., Wang, C., Wang, J., He, Y., Yang, G., et al. (2012). Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7, e52439.   DOI
124 Zhu, J.-K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66-71.
125 Zhu, J.-K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441-445.   DOI
126 Zhu, J. (2007). Plant salt stress. In encyclopedia of life sciences (John Wiley & Sons).
127 Zhu, J.-K., Liu, J., and Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10, 1181-1191.   DOI
128 Liu, D., Ford, K.L., Roessner, U., Natera, S., Cassin, A.M., Patterson, J.H., and Bacic, A. (2013b). Rice suspension cultured cells are evaluated as a model system to study salt responsive networks in plants using a combined proteomic and metabolomic profiling approach. Proteomics 13, 2046-2062   DOI
129 Lim, P.O., Kim, H.J., and Nam, G.H. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115-136.   DOI
130 Liu, X., Zhai, S., Zhao, Y., Sun, B., Liu, C., Yang, A., and Zhang, J. (2013a). Overexpression of the phosphatidylinositol synthase gene (ZmPIS) conferring drought stress tolerance by altering membrane lipid composition and increasing ABA synthesis in maize. Plant Cell Environ. 36, 1037-1055.   DOI
131 Lutts, S., Kinet, J.M., and Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. Exp. Bot. 46, 1843-1852.   DOI
132 Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., Liu, B., Qiu, Q., Wang, Z., Zhang, J., et al. (2013). Genomic insights into salt adaptation in a desert poplar. Nat. Commun. 4, 2797   DOI
133 Maas, E.V., and Hoffman, G.J. (1977). Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 103, 115-134.
134 Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.-K., Pardo, J.M., and Quintero, F.J. (2007). Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143, 1001-1012.
135 del Martinez-Ballesta, M.C., Silva, C., Lopez-Berenguer, C., Cabanero, F.J., and Carvajal, M. (2006). Plant aquaporins: new perspectives on water and nutrient uptake in saline environment. Plant Biol. 8, 535-546.   DOI
136 McClung, C.R., and Davis, S.J. (2010). Ambient thermometers in plants: from physiological outputs towards mechanisms of thermal sensing. Curr. Biol. 20, R1086-R1092.   DOI
137 Mas, P., Kim, W.-Y., Somers, D.E., and Kay, S.A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature. 426, 567-570.   DOI
138 Maxwell, B.B., Andersson, C.R., Poole, D.S., Kay, S.A., and Chory, J. (2003). HY5, Circadian Clock-Associated 1, and a cis-Element, DET1 Dark Response Element, mediate DET1 regulation of Chlorophyll a/b-Binding Protein 2 Expression. Plant Physiol. 133, 1565-1577.   DOI
139 McClung, C.R. (2011). "Chapter 4-The Genetics of Plant Clocks," in Adv. Genet., ed. Stuart Brody (Academic Press), pp. 105-139.
140 Michael, T.P., Breton, G., Hazen, S.P., Priest, H., Mockler, T.C., Kay, S.A., and Chory, J. (2008). A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 6, e225.   DOI
141 Miller, G., Suzuki, N., Ciftci-Yilmaz, S., and Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Env. 33, 453-467.   DOI
142 Mittova, V., Tal, M., Volokita, M., and Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiol. Plant 115, 393-400.   DOI
143 Mizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., Mouradov, A., Fowler, S., Kamada, H., Putterill, J., et al. (2005). Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17, 2255-2270.   DOI
144 Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytol. 167, 645-663.   DOI
145 Munne-Bosch, S., and Alegre, L. (2004). Die and let live: leaf senescence contributes to plant survival under drought stress. Funct. Plant Biol. 31, 203-216.   DOI
146 Munnik T., and Vermeer, J.E.M. (2010). Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants. Plant Cell Environ. 33, 655-669.   DOI
147 Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Env. 25, 239-250.   DOI
148 Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681.   DOI
149 Nagamiya, K., Motohashi, T., Nakao, K., Prodhan, S., Hattori, E., Hirose, S., Ozawa, K., Ohkawa, Y., Takabe, T., Takabe, T., et al. (2007). Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnol. Rep. 1, 49-55.   DOI
150 Nakagami, H., Pitzschke, A., and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 10, 339-346.   DOI
151 Nakamichi, N., Kita, M., Ito, S., Sato, E., Yamashino, T., and Mizuno, T. (2005a). The Arabidopsis Pseudo-response Regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol. 46, 609-619.   DOI
152 Nakamichi, N., Kita, M., Ito, S., Yamashino, T., and Mizuno, T. (2005b). PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686-698.   DOI
153 Oh, D.-H., Lee, S.Y., Bressan, R.A., Yun, D.-J., and Bohnert, H.J. (2010). Intracellular consequences of SOS1 deficiency during salt stress. J. Exp. Bot. 61, 1205-1213.   DOI
154 Nakamichi, N., Kusano, M., Fukushima, A., Kita, M., Ito, S., Yamashino, T., Saito, K., Sakakibara, H., and Mizuno, T. (2009). Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol. 50, 447-462.   DOI
155 Nawaz, K., Hussain, K., Majeed, A., Khan, F., Afghan, S., and Ali, K. (2010). Fatality of salt stress to plants : Morphological, physiological and biochemical aspects. Afr. J .Biotechnol. 9, 5475-5480.
156 Nuccio, M.L., Rhodest, D., McNeil, S.D., and Hanson, A.D. (1999). Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol. 2, 128-134.   DOI
157 Oh, D.-H., Hong, H., Lee, S.Y., Yun, D.-J., Bohnert, H.J., and Dassanayake, M. (2014). Genome Structures and Transcriptomes Signify Niche Adaptation for the Multiple-Ion-Tolerant Extremophyte Schrenkiella parvula. Plant Physiol. 164, 2123-2138.   DOI
158 Olias, R., Eljakaoui, Z., Li, J., De Morales, P. A., Carmen, M.-M.M., Pardo, J.M., and Belver, A. (2009). The plasma membrane $Na^+$/$H^+$ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of $Na^+$ between plant organs. Plant Cell Env. 32, 904-916.   DOI
159 Oliverio, K.A., Crepy, M., Martin-Tryon, E.L., Milich, R., Harmer, S.L., Putterill, J., Yanovsky, M.J., and Casal, J.J. (2007). GIGANTEA regulates phytochrome a-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol. 144, 495-502.   DOI
160 Olszewski, N., Sun, T., and Gubler, F. (2002). Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14, S61-S80.   DOI
161 Olszewski, N.E., West, C.M., Sassi, S.O., and Hartweck, L.M. (2010). O-GlcNAc protein modification in plants: evolution and function. Biochim. Biophys. Acta. 1800, 49-56.   DOI
162 Opdenakker, K., Remansemail, T., Vangronsveld, J., and Cuypers, A. (2012). Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int. J. Mol. Sci. 13, 7828-7853.   DOI
163 Paltiel, J., Amin, R., Gover, A., Ori, N., and Samach, A. (2006). Novel roles for GIGANTEA revealed under environmental conditions that modify its expression in Arabidopsis and Medicago truncatula. Planta 224, 1255-1268.   DOI
164 Pardo, J.M. (2010). Biotechnology of water and salinity stress tolerance. Curr. Opin. Biotech. 21, 185-196.   DOI
165 Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A., and Nam, H.G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285, 1579-1582.   DOI
166 Park, H.J., Kim, W.-Y., and Yun, D.-J. (2013). A role for GIGANTEA: Keeping the balance between flowering and salinity stress tolerance. Plant Signal. Behav. 8, e24820.   DOI
167 Perales, M., and MAs, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. Plant Cell 19, 2111-2123.   DOI
168 Pyo, Y.J., Gierth, M., Schroeder, J.I., and Cho, M.H. (2010). Highaffinity $K^+$ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and postgermination growth under low-potassium conditions. Plant Physiol. 153, 863-875.   DOI
169 Qin, F., Kodaira, K.-S., Maruyama, K., Mizoi, J., Tran, L.-S. P., Fujita, Y., Morimoto, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiol. 157, 1900-1913.   DOI
170 Qi, Z., and Spalding, E.P. (2004). Protection of plasma membrane $K^+$ transport by the salt overly sensitive1 $Na^+$/$H^+$ antiporter during salinity stress. Plant Physiol. 136, 2548-2555.   DOI
171 Quintero, F. ., Ohta, M., Shi, H., Zhu, J.-K., and Pardo, J.M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for $Na^+$ homeostasis. Proc. Natl. Acad. Sci. USA 99, 9061-9066.   DOI
172 Rengel, Z. (1992). The role of calcium in salt toxicity. Plant Cell Env. 15, 625-632.   DOI
173 Riboni, M., Galbiati, M., Tonelli, C., and Conti, L. (2013). GIGANTEA enables drought escape response via abscisic aciddependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1. Plant Physiol. 162, 1706-1719.   DOI
174 Rivas-San Vicente, M., and Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. J. Exp. Bot. 62, 3321-3338.   DOI
175 Rodrigo-Moreno, A., Poschenrieder, C., and Shabala, S. (2013). Transition metals: A double edge sward in ROS generation and signaling. Plant Signal. Behav. 8, e23425.   DOI
176 Rontein, D., Basset, G., and Hanson, A.D. (2002). Metabolic engineering of osmoprotectant accumulation in plants. Metab. Eng. 4, 49-56.   DOI
177 Sahi, C., Singh, A., Kumar, K., Blumwald, E., and Grover, A. (2006). Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct. Integr. Genomics 6, 263-284.   DOI
178 Rosa, M., Prado, C., Podazza, G., Interdonato, R., GonzAlez, J.A., Hilal, M., and Prado, F.E. (2009). Soluble sugars: Metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4, 388-393.   DOI
179 Rus, A., Yokoi, S., Sharkhuu, A., Reddy, M., Lee, B., Matsumoto, T.K., Koiwa, H., Zhu, J.-K., Bressan, R.A., and Hasegawa, P. M. (2001). AtHKT1 is a salt tolerance determinant that controls $Na^+$ entry into plant roots. Proc. Natl. Acad. Sci. USA 98, 14150-14155.   DOI
180 Rus, A., Lee, B., Munoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.-K., Bressan, R.A., and Hasegawa, P.M. (2004). AtHKT1 facilitates $Na^+$ homeostasis and $K^+$ nutrition in planta. Plant Physiol. 136, 2500-2511.   DOI
181 Sairam, R.K., and Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86, 407-421.
182 Sakamoto, A., and Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Env. 25, 163-171.   DOI
183 Salome, P.A., and McClung, C.R. (2005). PSEUDO-RESPONSE REGULATOR 7 and 9 are partially redundant genes essential for the temperature responsiveness of the Arabidopsis circadian clock. Plant Cell 17, 791-803.   DOI
184 Salter, M.G., Franklin, K.A., and Whitelam, G.C. (2003). Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature. 426, 680-683.   DOI
185 Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265.   DOI
186 Sanders, D., Pelloux, J., Brownlee, C., and Harper, J.F. (2002). Calcium at the crossroads of signaling. Plant Cell 14, S401-S417.   DOI
187 Sanchez, A., Shin, J., and Davis, S.J. (2011). Abiotic stress and the plant circadian clock. Plant Signal. Behav. 6, 223-231.   DOI
188 Sawa, M., and Kay, S.A. (2011). GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 108, 11698-11703.   DOI
189 Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A., and Coupland, G. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219-1229.   DOI
190 Sehgal, D., Rajaram, V., Armstead, I., Vadez, V., Yadav, Y., Hash, C., and Yadav, R. (2012). Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol. 12, 9.   DOI
191 Seo, P., Park, J.-M., Kang, S., Kim, S.-G., and Park, C.-M. (2011). An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233, 189-200.   DOI
192 Seung, D., Risopatron, J., Jones, B., and Marc, J. (2012). Circadian clock-dependent gating in ABA signalling networks. Protoplasma 249, 445-457.   DOI
193 Shabala, S., and Cuin, T.A. (2007). Potassium transport and plant salt tolerance. Physiol. Plant 133, 651-669.
194 Shen, B., Jensen, R.G., and Bohnert, H.J. (1997). Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115, 527-532.   DOI
195 Shao, H.-B., Chu, L.-Y., Lu, Z.-H., and Kang, C.-M. (2008). Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int. J. Biol. Sci. 4, 8-14.
196 Shatil-Cohen, A., Attia, Z., and Moshelion, M. (2011). Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J. 67, 72-80.   DOI
197 Shavrukov, Y. (2013). Salt stress or salt shock: which genes are we studying? J. Exp. Bot. 64, 119-127.   DOI
198 Shi, H., Ishitani, M., Kim, C., and Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative $Na^+$/$H^+$ antiporter. Proc. Natl. Acad. Sci. USA 97, 6896-6901.   DOI
199 Shi, H., Quintero, F.J., Pardo, J.M., and Zhu, J.-K. (2002). The putative plasma membrane $Na^+$/$H^+$ antiporter SOS1 controls long-distance $Na^+$ transport in plants. Plant Cell 14, 465-477.   DOI
200 Shi, H., Lee, B., Wu, S.-J., and Zhu, J.-K. (2003). Overexpression of a plasma membrane $Na^+$/$H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotech. 21, 81-85.   DOI
201 Sothern, R.B., Tseng, T.-S., Orcutt, S.L., Olszewski, N.E., and Koukkari, W.L. (2002). GIGANTEA and SPINDLY genes linked to the clock pathway that controls circadian characteristics of transpiration in Arabidopsis. Chronobiol. Int. 19, 1005-1022.   DOI
202 Thain, S.C., Vandenbussche, F., Laarhoven, L.J.J., Dowson-Day, M.J., Wang, Z.-Y., Tobin, E.M., Harren, F.J. M., Millar, A.J., and Van Der Straeten, D. (2004). Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol. 136, 3751-3761.   DOI
203 Sunkar, R., Kapoor, A., and Zhu, J.-K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18, 2051-2065.   DOI
204 Szczerba, M.W., Britto, D.T., and Kronzucker, H.J. (2009). $K^+$ transport in plants: Physiology and molecular biology. J. Plant Physiol. 166, 447-466.   DOI
205 Tang, R.-J., Liu, H., Bao, Y., Lv, Q.-D., Yang, L., and Zhang, H.-X. (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74, 367-380.   DOI
206 Thines, B., and Harmon, F.G. (2011). Four easy pieces: mechanisms underlying circadian regulation of growth and development. Curr. Opin. Plant Biol. 14, 31-37.   DOI
207 Tripathy, B.C., and Oelmuller, R. (2012). Reactive oxygen species generation and signaling in plants. Plant Signal. Behav. 7, 1621-1633.   DOI
208 Tseng, T.-S., Salome, P.A., McClung, C.R., and Olszewski, N.E. (2004). SPINDLY and GIGANTEA interact and act in Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell 16, 1550-1563.   DOI
209 Tyerman, S.D., Bohnert, H.J., Maurel, C., Steudle, E., and Smith, J.A.C. (1999). Plant aquaporins: their molecular biology, biophysics and significance for plant water relations. J. Exp. Bot. 50, 1055-1071.
210 Umezawa, T., Fujita, M., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Plant Biotech. 17, 113-122.   DOI
211 Ushakova, S.A., Kovaleva, N.P., Gribovskaya, I.V., Dolgushev, V.A., and Tikhomirova, N. A. (2005). Effect of NaCl concentration on productivity and mineral composition of Salicornia europaea as a potential crop for utilization NaCl in LSS. Adv. Space Res. 36, 1349-1353.   DOI
212 Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., and Thomas, G. (2003). Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci. 165, 1411-1418.   DOI
213 Verslues, P. E., Batelli, G., Grillo, S., Agius, F., Kim, Y.-S., Zhu, J., Agarwal, M., Katiyar-Agarwal, S., and Zhu, J.-K. (2007). Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and $H_2O_2$ signaling in Arabidopsis thaliana. Mol. Cell Biol. 27, 7771-7780.   DOI
214 Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: sn overview. Env. Exp. Bot. 61, 199-223.   DOI
215 Wang, X.-F., and Zhang, A.-P. (2008). Abscisic acid receptors: Multiple signal-perception sites. Ann. Bot. 101, 311-317.
216 Wang, Z.Y., Kenigsbuch, D., Sun, L., Harel, E., Ong, M.S., and Tobin, E. M. (1997). A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9, 491-507.   DOI
217 Wang, S., Bai, Y., Shen, C., Wu, Y., Zhang, S., Jiang, D., Guilfoyle, T., Chen, M., and Qi, Y. (2010). Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genomics. 10, 533-546.   DOI