• Title/Summary/Keyword: salt damage

Search Result 276, Processing Time 0.022 seconds

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Study on The Drug Processing of of the Roots of Aconitum carmichaeli (바꽃(烏頭)의 포제(抱製)에 관한 연구)

  • Seong, Man-Jun;Lee, Kye-Suk;Cho, Sun-Hee;Lee, Go-Hoon;Kang, OK-Hwa;Kwon, Dong-Yeul
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 2005
  • From the tuberous root of Aconitum carmichaeli Debx.(Ranunculaceae), the main root is called as common monkhood mother root and the later root is called as the prepared aconite root. From the prepared aconite root. Looking at the processing method of the prepared aconite root, it is divided into Yeombuja (prepared aconite root processed in salt) and heuksoonpyeon (baekbupyeon) following the processing method after removing the soil and this is a way of processing the prepared aconite root without damage it. The recently produced raw prepared aconite root is easily damaged, thus it shall be preserved in salt to have the crystal shape on the surface of the prepared aconite root and store and transport in firmly solidified yeombuja condition. Therefore, yeombuja shall remove the salt before use and requires processing for use but heuksoonpyeon or baekbupyeon may use immediately. For the succession of the unique processing techniques of our ancestors, there has to be studies on the techniques. Prepared aconite root is generally used as holy medicines to cure the yang depletion syndrome, kidney-yang deficiency syndrome, and obstruction of qi in the chest syndrome. However, they are the substances with toxicity. It is contemplated that the contents of processing are broadly understood through the document on the processing method, and based on such foundation, the systematic set and proof on the documents are made along with the addition of the contemporary scientific theory and technology to develop the traditional processing technology to maximize the treatment effect and safety of prepared aconite root. In this study, the historic data and records on the processing method of latteral root of aconitum carmichaeli Debx will be rearranged to contribute to the standardization of medicinal herbs, maximization of efficacy and minimization of the side effects.

  • PDF

Changes in the Antioxidative and Antigenotoxic Effects After the Cooking Process of Sulgidduk Containing Pine Needle Juice (솔잎착즙액을 첨가한 설기떡의 가열조리에 따른 항산화 및 항유전독성 효능 검증)

  • Lee, Hyun-Jung;Kim, So-Yun;Park, Jae-Hee;Kim, Rae-Young;Jeong, Hyeon-Suk;Park, Eunju
    • Korean journal of food and cookery science
    • /
    • v.29 no.5
    • /
    • pp.453-462
    • /
    • 2013
  • Recently, two formulas of sulgidduk added to pine needle juice (PNJ) with various physiological activities were developed for metabolic syndrome patients in our lab. According to previous studies, cooking may alter antioxidant properties by initiating destruction, release or transformation of antioxidant compounds contained in food. Therefore, the aim of this study was to compare the antioxidant activities and antigenotixic effects of sulgidduk with/without PNJ and to note changes in these activities after cooking. The ingredients of sulgidduk was added on the basis of 100% rice flour as follows: conventional sulgidduk (S): 1.5% salt, 30.0% sugar; PNJ added to sulgidduk A (PS-A): 1.4% salt, 30.0% sugar, and 1.0% PNJ; PNJ added to sulgidduk B (PS-B): 1.5% salt, 21.4% sugar, and 1.4% PNJ. Ethanol and water extracts of sulgidduk were analyzed for the total phenolic content (TPC), DPPH radical scavenging activity (DPPH RSA), total radical-trapping antioxidant potential (TRAP), oxygen radical absorbance capacity (ORAC), and antigenotoxic effect by comet assay. The ethanol extracts PS-A and PS-B showed higher TPC and antioxidant activities (DPPH RSA, TRAP, and ORAC) than did the S ethanol extract before cooking. The more PNJ was added, the higher TPC and anitoxidant activities were observed in sulgidduk (PS-A$200{\mu}M$ of $H_2O_2$. Taken together, this study suggests that sulgidduk added to 1.44% of pine needle juice may be a good option antioxidant and antigenotoxic source.

Physiological Properties of Microbial Cells Treated by Pulsed Electric Field(PEF) (고전압 펄스 전기장 처리된 미생물 세포의 생리특성)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Choi, Hee-Don;Hong, Hee-Doo;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.368-374
    • /
    • 1999
  • This study was designed to investigate effects of pulsed electric field (PEF) treatment on physiological changes of microbial cells, using domestically fabricated pilot scale PEF device. The effect of non-thermal PEF treatment on physiological characteristics of microorganisms was determined by salt resistance, the amount of UV absorbents, cell staining, recovery rate of defected cells, and changes in structure of cell membrane. Salt resistance of Escherichia coli, Bacillus subtilis and Rhodotorula minuta was examined after PEF treatment at 40 kV/cm, 84 pulse, $10{\mu}s$ pulse duration. Approximately $1\;log_{10}$ cell number of viable microorganisms was decreased by addition of salt. PEF treatment significantly increased the amount of UV absorbents at 260 and 280 nm because of leakage from damaged cell membrane by PEF treatment. Although three kinds of microorganisms treated by PEF were difficult to be observed due to their cell membrane damage, untreated cells were clearly observed by a microscope. PEF-treated R. minuta was not stained by methylene blue due to cell membrane defect. When E. coli, B. subtilis and R. minuta were cultured after PEF treatment, they showed 5, 4, and 8 hr longer lag phase, respectively, compared to control, but growth rates were not affected.

  • PDF

Proteomic Analyses of Chinese Cabbage(Brassica campestris L. pekinensis) Affected by High Temperature Stresses in Highland Cultivation During Summer in Korea (Proteomics를 이용한 고랭지 배추의 고온장해 해석)

  • Shin, Pyung-Gyun;Hong, Sung-Chang;Chang, An-Cheol;Kim, Sang-Hyo;Lee, Ki-Sang
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1649-1653
    • /
    • 2007
  • High temperature stresses have caused growth inhibition and delayed heading in highland cultivation Chinese cabbage during summer in Korea. We have studied high temperature stress responses in the terms of changes of inorganic components and proteins by proteomic analyses. Insufficiencies of nitrogen and phosphorus have affected growth rate and calcium deficiency has caused blunted heading. Proteins extracted from Brassica seedling grown at the altitude of 600m and 900m in the Mount Jilun were extracted and analysed by 2-dimentional polyacrylamide gel electrophoresis. Profiles of protein expression was then analyzed by 2-dimentional gel analyses. Protein spots showing different expression level were picked using the spot handling workstation and subjected to MALDI-TOF MS. Total 48 protein spots were analyzed by MALDI-TOF MS and 30 proteins spots out of 48 were identified by peptide mass fingerprinting analyses. Fourteen proteins were up-regulated in extracts from the altitude of 900m and they were identified as oxygen-evolving proteins, rubisco activase and ATPase etc. Sixteen proteins were up-regulated in extracts from the altitude of 600m and they were identified as glutathione S-transferase(1, 28kD cold induced- and 24 kD auxin-binding proteins) and salt-stress induced protein etc. These stress-induced proteins were related to the mediated protective mechanism against oxidative damage during various stresses. The results indicated that physiological phenomenon in response to high temperature stresses might be resulted by complex and multiple array of responses with drought, heat, oxidative, salt, and cold by high temperature.

Studies on the tolerance of Halophyte Arabis stelleri under heavy metals and Salt stress condition (염생식물 섬갯장대(Arabis stelleri var. japonica)의 중금속 및 고염 농도 스트레스 상태에서 내성 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.373-378
    • /
    • 2019
  • In the marine area, the salt concentration in the soil increases, and the inland heavy metal pollution increases the damage of plants. In the inland industrial development area, researches on the genetic resources of plants together with the heavy metal accumulation of Co, Ni, Zn, and so on are required. Both of these problems have caused scientists to work hard to find plants that are likely to cause stress in plant roots. In this study, seeds of Arabis stelleri var. japonica collected near the shore were used for germination. The growth and development and tolerance of both Arabis and Arabidopsis seeds were investigated under laboratory culture conditions. As a result, Arabis showed resistance about 3 times in 250 mM nickle and cobalt, and more than 4 times in 1 mM zinc when compared to Arabidopsis. The tolerance of Arabis to Na salts increased by 20% or more at 50 mM concentration and Arabis was resistant to heavy metals and salt concentration. The accumulation of Na ions in the body was measured as a preparation for studying the intracellular mechanism. As a result, it showed a further decrease in resistance to ground water roots. It is considered that the activity of the exporting gene is important rather than the mechanism of accumulation.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Antioxidant Activity and Inhibitory Effect on Oxidative DNA Damage of Ethyl Acetate Fractions Extracted from Cone of Red Pine (Pinus densiflora) (솔방울 에틸아세테이트 분획물의 항산화 및 산화적 DNA 손상 억제 활성)

  • Jang, Tae Won;Nam, Su Hwan;Park, Jae Ho
    • Korean Journal of Plant Resources
    • /
    • v.29 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • Antioxidant activity and inhibitory effect on oxidative DNA damage of ethyl acetate fractions extracted from Cone of Red Pine (Pinus densiflora) were investigated to find utilization of Cone, by-product of Red Pine, thrown out after berry shatter, as a new natural plant resource. Cone from P. densiflora was extracted with methanol (MeOH) and separated to petroleum ether, ethyl acetate and water fraction. Among them, ethyl acetate fraction was used. The antioxidant activity was conducted by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical, 2, 2'-Azino-bis (3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt (ABTS) radical scavenging assay, Fe2+ chelating assay and reducing power assay. The inhibitory effect on oxidative DNA damage was determined by DNA cleavage assay using φX-174 RF I plasmid. The results of DPPH and ABTS radical scavenging activity at 200 ㎍/㎖ of extracts were 86.50% and 95.80% respectively, which were similar figures compared with L-ascorbic acid as control. Fe2+ chelating activity was 77.96% and reducing power was 0.77 at 200 ㎍/㎖. Total phenolic component was 27.29±0.3 ㎎/g and Vitamin C content was 1.84±0.1 ㎎/g. Also ethyl acetate fraction from Cone has inhibitory effect, using φX-174 RF I plasmid on DNA cleavage assay. In conclusion, Cone, by-product of P. densiflora, showed high antioxidant activity and inhibitory effect on oxidative DNA damage. Therefore this study suggests Cone, useless by-product, can be developed as a new natural plant resource with lots of utilization such as an effective antioxidant, natural medicine, food, cosmetics and so on.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.

A Review of the Deterioration and Damage of the Top Flange of the Highway PSC Box Girder Bridge based on the Condition Assessment Results (상태평가 결과 기반 고속도로 PSC Box 거더교 상부플랜지 열화·손상 실태 고찰)

  • Ku, Young-Ho;Han, Sang-Mook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.23-32
    • /
    • 2022
  • Although PSCB girder bridges account for 4% of the bridges in use on highways, they do not account for much, but 98% of PSCB girder bridges are 1st type and 2nd type of bridge. Also, the total length of the PSCB girder bridge is 16% (192km) of the total length of the highway bridge. Thus, the PSCB girder bridge can be one of the bridge types where maintenance is important. In order to analyze the damage types of PSCB girder bridges, a detailed analysis was conducted by selecting 62 places (477 spans) precision safety diagnosis reports considering ratio of the construction method and snow removal environment exposure class. Analysis of report and a field investigation was conducted, and as a result, most of the causes of deterioration damage were caused by rainwater (salt water) flowing into the bridge pavement soaking in between the top flange and the interface. After concrete slab deteriorate occurred then bridge pavement cracking and breaking increased and exfoliation of concrete occurred by corrosion and expansion of the reinforcing bars occurred. In addition, the cause of cracks in the longitudinal direction on the bottom of the top flange is considered to be cracks caused by restrained drying shrinkage. In conclusion, for reasonable maintenance considering the characteristics of PSCB girder bridges, it should be suggested in the design aspect that restrained drying shrinkage crack on top flange. Also, it is believed that differentiated maintenance method should be proposed according to snow removal environment exposure class.