• Title/Summary/Keyword: salinity environment

Search Result 695, Processing Time 0.032 seconds

Salinity and water level measuring device using fixed type buoyancy (고정식 부력을 이용한 염도 및 수위 측정 방식에 대한 연구)

  • Yang, Seung-Young;Byun, Kyung-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • To make an automated system for a salt field, it is necessary to measure the salinity and water level of the evaporation site. In this paper, a method to simultaneously measure the salinity and water level by measuring the buoyancy forces of two fixed buoyancy bodies is proposed. The proposed measurement method measures the buoyancy of the main part and reference part when the measuring device is immersed in the salty water, and simultaneously measures the salinity and water level through the sum and difference of the two buoyancy forces. Since there is no mechanical movement in the measurement of buoyancy, measurement errors and maintenance needs can be reduced in the mudy environment of salt field. By applying the proposed method, we developed a system that can simultaneously measure salinity and water level remotely at the evaporation site of a salt field. Through a measurement experiment using a reference salty water having various levels of salinity, the results of a salinity error of 0% and a water level error of 2mm were obtained, and the effectiveness of the proposed salinity and water level measuring device was verified. When an automated system is constructed using the developed salinity and water level measuring device, labor reduction, work environment improvement, and productivity improvement are expected.

Analysis of Saltwater Intrusion by Flushing Discharge in the Seomjin River Estuary (Flushing 방류로 인한 섬진강 하구부 염수침입 영향분석)

  • Noh, Joonwoo;Lee, Jin-Young;Shin, Jae-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.325-335
    • /
    • 2011
  • Estuary is a transitional zone between river and ocean environment that receives the maritime and riverine influence simultaneously. Estuaries are the most productive habitats because their incoming water provides large quantities of nutrients. The Seomjin River estuary, located in the middle south of Korea, has no barrage and shows natural characteristic of estuary. However, due to dredging and reclamation the environment of the estuary has been changed significantly in the river mouth. In addition, increased freshwater intake in midstream of the Seomjin River results in salinity intrusion. In this paper salinity variation in downstream estuary of the Seomjin River has been simulated and tested using EFDC model. The results of simulation were compared with measured data collected at three points, Culture & Art Center, Sumjin Iron Bridge, and Mokdori, located at 9Km, 14Km, and 15.5Km respectively from downstream estuary. Based on the simulated results, the contribution of the flushing discharge has been evaluated in preventing the salinity intrusion by increasing the discharge flowrates released from the Juam dam.

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.

Plant Growth-Promoting Rhizobacteria Improved Salinity Tolerance of Lactuca sativa and Raphanus sativus

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.938-945
    • /
    • 2018
  • Salinity stress is an important environmental problem that adversely affects crop production by reducing plant growth. The impacts of rhizobacterial strains to alleviate salinity stress on the germination of Lactuca sativa and Raphanus sativus seeds were assessed using different concentrations of NaCl. Plant growth-promoting rhizobacteria (PGPR) strains were also examined to improve the early germination of Chinese cabbage seeds under normal conditions. Lactobacillus sp. and P. putida inoculation showed higher radicle lengths compared with non-inoculated radish (Raphanus sativus) seeds. LAP mix inoculation increased the radicle length of lettuce (Lactuca sativa) seedlings by 2.0 and 0.5 cm at salinity stress of 50 and 100 mM NaCl concentration, respectively. Inoculation by Azotobacter chroococcum significantly increased the plumule and radicle lengths of germinated seeds compared with non-inoculated control. A. chroococcum increased the radicle length relative to the uninoculated seeds by 4.0, 1.0, and 1.5 cm at 50, 100, and 150 mM NaCl concentration, respectively. LAP mix inoculation significantly improved the radicle length in germinated radish seeds by 7.5, 1.3, 1.2, and 0.6 cm under salinity stress of 50, 100, 150, and 200 mM NaCl concentration, respectively. These results of this study showed that PGPR could be helpful to mitigate the salinity stress of different plants at the time of germination.

Water Quality and Heavy Metals in the Surface Seawaters of the Saemangeum Area during the Saemangeum-dike Construction (새만금 방조제 체절 과정 중 새만금 주변해역 표층수의 수질과 중금속 분포 특성)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Kim, Seong-Soo;Park, Jong-Soo;Park, Jun-Kun;Cho, Sung-Rok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2009
  • In order to investigate spatial and temporal distributional characteristics of major water qualities in the Saemangeum area during the Saemangeum dike construction, salinity, COD, dissolved nutrients(DIN, Silicate) and heavy metals were analyzed from the surface water collected in April, May, August and November 2002. The overall value of Salinity, COD, DIN, and silicate in surface waters were in the range of $13.08{\sim}31.96\;psu$, $0.12{\sim}3.43\;mg/L$, $0.001{\sim}2.638\;mg/L$, and $0.010{\sim}3.181\;mg/L$, respectively. The COD and DIN in each survey showed the highest concentration at the mouth of Mangyeong river estuary(St. 1) where freshwater flow into the Saemangeum area. The concentrations of nutrients were high in the inner part of the Saemangeum dike with low-salinity, and low nutrients in the outer part of the dike with high-salinity, which strongly indicated that concentrations were adjusted by physical mixing. The ranges of dissolved metals and acid-soluble Hg in surface seawater were $0.006{\sim}0.115{\mu}g/L$ for Co, $0.26{\sim}0.114{\mu}g/L$ for Ni, $0.14{\sim}0.93{\mu}g/L$ for Cu, $0.04{\sim}0.53{\mu}g/L$ for Zn, $0.010{\sim}0.043{\mu}g/L$ for Cd, $0.010{\sim}0.795{\mu}g/L$ for Pb, and $0.25{\sim}4.16{\mu}g/L$ for Hg. The highest concentrations of some metals except for Cd were found at the estuary(Sts. 1 or 3). In most cases, a decreasing order of metal concentrations towards open sea(low-salinity$\rightarrow$high-salinity) was observed and showed positive relationship with DIN and silicate caused by land base pollutants input. On the other hand, due to Cd desorption from suspended solids in saline water, dissolved Cd concentrations were high in high-salinity area and low in low-salinity. In November, Co, Zn, Cu and Pb were relatively high in the northern area of the outer-side of Saemangeum, which was only influenced by the Geum river discharge. The concentrations of most dissolved metals of this study were lower than those of the past data in this area, but higher than those in Lena river estuary under the pristine environment.

  • PDF

A Study on the Origin of Organic Matter in Seawater in Korean Estuaries Using Chemical Oxygen Demand (화학적산소요구량을 이용한 하구해역의 해수중 유기물 기원 고찰)

  • Kim, Young-Sug;Koo, Jun-Ho;Kwon, Jung-No;Lee, Won-Chan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.735-749
    • /
    • 2018
  • In this study, one studied the principal factors and water-quality components that determine the concentration of chemical oxygen demand (COD) in seawater in estuaries, such as the Han, Geum, Youngsan, Seomjin, and Nakdong rivers in Korea. The principal factors determining the concentration of COD in seawater indicated by the principal component analysis were salinity, exogenous origin and autochthonous resources based on chlorophyll-a. Moreover, organic matter in the submarine sediment layer also had a secondary effect. Regression slope assessed the contribution of water-quality components to determine the concentration of COD in the estuary. One found that the effect of salinity on the overall survey was significant. Moreover, the effect of chlorophyll-a was also appeared in April and August. In each estuary, the most significant contribution factor was chlorophyll-a in the Nakdong River and salinity in the Han and Yongsan rivers. The contribution of salinity and chlorophyll-a were found to be the largest in the Geum River. The salinity and chlorophyll-a in the Seomjin River showed a low contribution.

Environmental Impacts of Brine from the Seawater Desalination Plants (해수담수화 시설에서 생성된 농축수의 환경적 영향)

  • Park, Seonyoung;Seo, Jinsung;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • The need for seawater desalination is increasing in terms of securing various water resources, but few studies are available as for the environmental impact of hypersaline concentrated water (brine) discharged from desalination plants. Domestic studies are concentrated mainly on toxicity evaluation that phytoplankton, zooplankton larvae and green algae (Ulva pertusa) are negatively affected by concentrated water. The mortality of Paralichthys olivaceus showed a linear relationship with increasing salinity, and Oryzias latipes died 100% at concentrations above 60 psu. Foreign studies included monitoring cases as well as toxicity evaluations. The number of species decreased around the area where the concentrated water discharged. The hypersaline concentrated water affects the pelagic and benthic organisms. However, the fishes escaped when exposed to salinity, and the pelagic and benthic organisms resistant to salinity survived the hypersaline environment. The salinity limit and distance from the outlet was presented as the regulatory standard for bine discharge. There were differences in regulatory standards among country and seawater desalination plants, and these regulatory standards have been strengthened recently. In particular, California Water Boards were revised to ensure that the maximum daily salinity concentration does not exceed 2 psu above the ambient salinity level within 100 m of the outlet.

Physical Environment Changes in the Keum River Estuary Due to Dike Gate Operation: III. Tidal Modulation of Low-salinity Water (하구언 수문 작동으로 인한 금강 하구역의 물리적 환경변화: III. 저염수의 조석동조)

  • Choi, Hyun-Yong;Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.115-125
    • /
    • 2001
  • To examine the movement of the freshwater discharged artificially into the estuary during ebbing period in the Keum River dike we observed surface salinity variations in three stations along the estuary channel in May 1998 and July 1997 and surface temperature and salinity along the ferry-route between Kunsan and Changhang during eighteen days in July 1999. Based upon the typical features of observed salinity variation, we analyzed the excursion and decay processes of the discharged water. When freshwater is discharged, the low-salinity water forms strong salinity front over the entire estuary width, which basically moves forth and back by tidal modulation along the channel, producing the sudden change of surface salinity with the front passage. Salinity distribution along the channel, which is deduced from time variation of mean salinity over the estuary width, after one tidal period from gate operation suggests that diluted low-salinity water is trapped to the front and surface salinity increases gradually toward the upstream region. This frontal distribution of salinity is interpreted to be produced by the sudden gate operation supplying and stopping of freshwater within about two hours. Daily repeat of freshwater discharge produces separation (double front) or merge between decaying and new-generated fronts depending on dike-gate opening time, and the front decays with salinity increasing if the freshwater supply is stopped more than two days. In addition, the observed fluctuations and deviations in surface salinity variation is explained in terms of the differences of fronts intensity, their transition time and temporal salinity front running along the channel, which can be generated due to artificial gate-operation for the discharging time and water volume in the estuary dike.

  • PDF

Effect of Salinity on the Survival and Growth of Larvae of the Boreal Digging Frog (Kaloula borealis) (맹꽁이 유생의 생장과 생존에서의 염분영향)

  • Ko, Sang-Beom;Ko, Young-Min;Lee, Jeong-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.4
    • /
    • pp.533-538
    • /
    • 2015
  • This study was conducted to examine the effect of salinity on the early embryonic development stage of boreal digging frogs (Kaloula borealis). An experiment was carried out with the eggs of K. borealis mating couples laid along the coastal zone of Jeju Island in June 2013. The salinity was set to 0, 1, 3, 5, and 7 ‰, respectively. The survival and growth of the larvae at various stages from the egg phase to the closing of their external gills phase were observed. In another experiment, tadpoles in internal gill stage were placed in solutions with salinity of 0, 1, 3, 5, and 7 ‰, respectively, and their survival rate and growth rate were observed, and then the results of the two experiments above were compared. The results showed that in egg and external gill stage, there was no significant difference in survival rate in 3 ‰ solution, though there was low survival rate in 5 ‰ solution. Further, all the eggs were dead in 7 ‰ solution, so it appeared that solutions with salinity of 5 ‰ or higher affect the survival of K. borealis in the early embryonic development. Larvae in the internal gill stage showed no significant difference in survival rate from the control group up to a salinity of 5 ‰, but when placed in a solution of over 7 ‰ salinity, the survival rate decreased. The growth rate also slowed down with the higher salinity. It appeared that in both the external gill stage and the internal gill stage in 5 ‰ solution, the growth rate decreased significantly compared to the control group. From this study it is concluded that higher salinity values have a significant impact on the survival and growth of the K. borealis larvae and this finding can be used to conserve K. borealis species that are decreasing in number due to the side effects of development in coastal areas.

Growth responses of New Zealand Spinach [Tetragonia tetragonoides (Pall.) Kuntze] to different soil texture and salinity (신규 채소작물용 번행초의 토성 및 염도에 대한 생육 반응)

  • Kim, Sung-Ki;Kim, In-Kyung;Lee, Geung-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.631-639
    • /
    • 2011
  • This research was conducted to investigate potential use of New Zealand spinach (Tetragonia tetragonoides) as a new vegetable crop which will be cultivating in salt-affected soils including reclaimed land. Traditionally New Zealand spinach has been studied to explore functional compound or salt removing potential. To cultivate the crop species in the salt-affected soil widely, it is essential to obtain salt and soil texture responses under the controlled environment. Fifty nine New Zealand spinach ecotypes native to Korean peninsula first collected over seashore areas, and primitive habitat soil environment was evaluated by analyzing soil chemical properties from 32 locations. Different textures of sandy, silt loam, and sandy loam soils were prepared from nearby sources of sea shore, upland and paddy soils, respectively. Target salinity levels of 16.0 dS/m, 27.5 dS/m, 39.9 dS/m, and 52.4 dS/m in electrical conductivity (ECw) were achieved by diluting of 25, 50, 75, 100% (v/v) sea water to tap water (control, 0.6 dS/m), respectively. Various measurements responding to soil texture and irrigation salinity included plant height, root length, fresh weight (FW), dry weight (DW), leaf parameters (leaf number, leaf length, leaf width), lateral branching, and inorganic ion content. was found to adapt to diverse habitats ranging various soil chemical properties including soil pH, organic matter, exchangeable bases, EC, and cation exchange capacity (CEC) in Korea. Responding to soil texture, New Zealand spinach grew better in silt loam and sandy loam soil than in sandy soil. Higher yield (FW and DW) seemed to be associated with branch number (r=0.99 and 0.99, respectively), followed by plant height (r=0.94 and 0.97, respectively) and leaf number (r=0.89 and 0.84, respectively). Plant height, FW, and DW of the New Zealand spinach accessions were decreased with increasing irrigation salinity, while root length was not significantly different compared to control. Based on previous report, more narrow spectrum of salinity range (up to 16 dS/m) needs to be further studied in order to obtain more accurate salinity responses of the plant. As expected, leaf Na content was increased significantly with increasing salinity, while K and Ca contents decreased. Growth responses to soil texture and irrigation salinity implied the potential use of New Zealand spinach as a leafy vegetable in salt-affected soil constructed with silt loam or sandy loam soils.