• 제목/요약/키워드: saline soil

검색결과 251건 처리시간 0.027초

Capillary Characteristics of Water and Cations in Multi-layered Reclaimed Soil with Macroporous Subsurface Layer Utilizing Coal Bottom Ash

  • Ryu, Jin-Hee;Chung, Doug-Young;Ha, Sang-Keon;Lee, Sang-Bok;Kim, Si-Ju;Kim, Min-Tae;Park, Ki-Do;Kang, Hang-Won
    • 한국토양비료학회지
    • /
    • 제47권6호
    • /
    • pp.406-411
    • /
    • 2014
  • Serious problems in reclaimed land agriculture are high soil salinity and poor vertical drainage, so desalinization in these soils is very difficult. Also, although desalinization is accomplished in reclaimed top soils, before long, soils are resalinized according to capillary rise of salts from the subsurface soils. To resolve these problems, multi-layered soil columns with subsurface layer of macroporous medium utilizing coal bottom ash (CBA) were constructed and the effects of blocked resalinization of these soils were investigated. In this experiment soil samples were collected from Munpo series (coarse-loamy, nonacid, mixed, mesic, typic Fluvaquents). The soil texture was silt loam and the EC was $33.9dS\;m^{-1}$. As for groundwater seawater was used and groundwater level of 1 cm from the bottom was maintained. The overall rate of capillary rise was $2.38cm\;hr^{-1}$ in soil 60 cm column, $0.25cm\;hr^{-1}$ in topsoil (30 cm) + CBA (5 cm) + subsurface soil (10 cm) column and $0.08cm\;hr^{-1}$ in topsoil (30 cm) + CBA (10 cm) + subsurface soil (10 cm) column. In multi-layered soil columns with CBA 20, 30 cm layer, wetting front due to capillary rise could not be seen in top soil layer. After 70 days capillary rise experiment water soluble Na+ accumulated in top soil of soil columns with CBA 20, 30 cm was diminished by 92.8, 96.5% respectively in comparison with Na+ accumulated in top soil of soil 60 cm column because CBA layer cut off capillary rise of salts from the subsurface soil. From these results we could conclude that the macroporous layer utilizing CBA placed at subsurface layer cut off capillary rise of solutes from subsurface soil, resulting in lowered level of salinity in top soil and this method can be more effective in newly reclaimed saline soil.

The effects of salt stress and prime on germination improvement and seedling growth of Calotropis procera L. seeds

  • Taghvaei, Mansour;Khaef, Nazila;Sadeghi, Hossein
    • Journal of Ecology and Environment
    • /
    • 제35권2호
    • /
    • pp.73-78
    • /
    • 2012
  • $Calotropis$ $procera$ L. is a perennial shrub distributed in saline areas of deserts of South Asia. Salt stress is a very challenging subject in arid and semi-arid areas. Germination stage is very sensitive and many plants do not germinate in saline soil. The objective of this study was identifying the salinity effect on seed germination of $Calotropis$ $procera$ L. The experimental design was a complete randomized block design with NaCl and $CaCl_2$ at five levels of isobar concentrations: 0.0, -0.01, -0.05, -0.1, and -0.15 MPa. Osmotic potential had significant effects ($P$ < 0.01) on germination percentage, germination rate, shoot length, root length, and seedling dry weight. All seedling characteristics decreased with decrease in osmotic potential. Shoot length and root length decreased more than the seedling characteristics. Germination was completely inhibited in -0.1 Mpa. Priming with NaCl and $CaCl_2$ (-0.1 MPa) for four days had significant effects ($P$ < 0.01) on the germination percentages. Priming improved the seedling characteristics in all samples, especially in -0.05 Mpa, but a decrease with decrease in osmotic potential.

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • 제7권3호
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine($4.0\;{\mu}M$) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of $1.0\;{\mu}M$ naphthalene acetic acid (NAA) in combination with $4.0\;{\mu}M$ BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with $4.0\;{\mu}M$ indolebutyric acid (IBA) and 100 mg/L activated charcoal, at $28{\pm}2^{\circ}C$ and $60\%$ RH. Sixty percent of these plantlets were hardened in green house.

간척지 사료작물 재배에 있어서 모래를 이용한 토양 mulching의 효과 II. 간척지 재배목초의 생육 및 건물축적형태와 사료가치에 관한 연구 (effects of Sand Mulching on Forage Production in Newly Reclaimed Tidal Lands II. Studies on growth , dry matter accumulation and nutrient quality of selected forage crops grown on saline soils)

  • 김정갑;한민수
    • 한국초지조사료학회지
    • /
    • 제10권2호
    • /
    • pp.77-83
    • /
    • 1990
  • A three year's field experiment was carried out on newly reclaimed tidal saline soils to evaluate the salt tolerance and growht characteristics, and their relationship to dry matter production and nutrient quality of main selected pasture species. Nine temperate grasses (14 varieties) and two forage crops (sorghum and pearl millet) were grown under different mulching treatments with medium sand and red-yellow soils (fine loamy materials of Typic Hapludults) from 1986 to 1988. Tall wheatgrass, tall fescue, reed canarygrass and alfalfa showed a good tolerance to soil salinity, especially tall wheatgrass (cv. Alkar) produced 19.6 ton/ha dry matter yield annualy under mulching treatment with medium sand depth in lcm. Pearl millet (cv. Gahi-3) was also evaluated as a salt tolerable forage species. Under salt stress in newly reclaimed tidal lands, plant showed a decrease in the assimirable leaf area (LA) as well as specific leaf area (SP. LA) and a low leaf weight ratio(LWR), and it resulted in a low concentration of crude protein and low digestible dry matter contents. Absorption of macro and micro elements in the plant on tidal lands was increased markedly.

  • PDF

간척지 토양의 제염과정중 수리전도도의 변화 (Changes of Hydraulic Conductivity During Desalmization of Reclaimed Tidelands)

  • 구자웅;은종호
    • 한국농공학회지
    • /
    • 제30권4호
    • /
    • pp.85-93
    • /
    • 1988
  • This laboratory study was carried out in order to produce fundamental data for analyzing salt movement and desalinization effects, using samples of silt loam soil collected in Gyehwado and Daeho reclaimed tidelans, and samples of silty clay loam soil collected in Kimie tideland. Desalinization experiments with gypsum treatment were performed to analyze changes of the hydraulicc conductivity with changes of the soil property and the salt concentration during the desalinization of reclaimed tideland soils by leaching through the subsufface drainage, and correlations between factors infl uencing the reclamation of salt affected soils were analyzed by the statistical method. The results were summarized as follows: 1. The reclaimed tideland soils used in this study were saline-sodic soils with the high exchangeable sodium percentage and the high electrical conductivity. 2. Changes of the hydraulic conductivity with the amount of leaching water and the leaching time elapsed were affected by the amount of gypsum except exchangeable sodium and clay contents. The regression equation between the depth of water leached per unit depth of soil (Dw / Ds : X) or the square root of the leaching time elapsed (T $^1$ $^2$ : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a . bx. 3. The more exchangeable sodium and clay contents regardless of the amount of gypsum, the more the leaching time was required until a given volume of water was leached through the soil profile. The regression analysis showed that the relationship between the depth of water leached per unit depth of soil(Dw /Ds:X) and the square root of the leaching time elapsed(T$^1$$^2$ :Y) could be described by Y=a . Xb. 4. The hydraulic conductivity was influenced to a major degree by the salt concentration provided that the electrical conductivity was below 10 mmhos / cm during the desalinization of reclaimed tideland soils. The regression equation between the relative electrical conductivity ( ECr : X) and the relative hydraulic conductivity (HCr:Y) could be expressed in Y=a + b . X-$^1$. 5. In conclusion, the hydraulic conductivity, leaching requirements and the leaching time elapsed can be estimated when the salt concentration decreases to a certain level during the desalinization of reclaimed tidelands, and the results may be applied to the analysis of salt movement and desalinization effects.

  • PDF

서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석 (Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea)

  • 범진아;정민혁;박현진;최우정;김영주;윤광식
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Effect of Saline Concentrations on Biological Nitrification in Batch Reactor

  • Lee, Young Joon;Nguyen, Viet Hoang;Nguyen, Hong Khanh;Pham, Tuan Linh;Kim, Gi Youn
    • 통합자연과학논문집
    • /
    • 제4권2호
    • /
    • pp.103-112
    • /
    • 2011
  • This study was carried out on 4 batch reactors to determine the specific ammonium oxidizing rate (SAOR), specific nitrate forming rate (SNFR) and inhibitory degree of nitrifying activities with saline concentrations. Under salt free condition ammonia was consumed during the reaction period within 200 min. When the salt level increased to 10, 20 and 30 g $NaClL^{-1}$ in reactor, ammonia depletion took 250, 300 and above 350 min, respectively. During concentration above 10 g $NaClL^{-1}$, there was nitrite accumulation. Also, at 30 g $NaClL^{-1}$ ammonia did not depleted and $NO_2{^-}$-N accumulated until the final reaction. Nitrate formation rates decreased with increasing salt concentration. SAOR and SNFR showed a decreasing trend as salinity concentrations were increased. The SAOR was reduced from 0.2 to 0.08 mg $NH_4{^+}$-N $g^{-1}VSS\;day^{-1}$ as the salt concentration increased from 0 to 30 g $NaClL^{-1}$. Similarly, the SNFR decreased from 0.26 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline free to 0.1 kg $NO_3{^-}$-N $kg^{-1}VSS\;day^{-1}$ at saline 30 g L-1. A severe inhibition of nitrifiers activity was observed at increased salt concentrations. The inhibition ratio of specific ammonium oxidation rates were 17, 47 and 60% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. The inhibition ratio of specific nitrate forming rates also were inhibited 30, 53 and 62% on the reactor of 10, 20 and 30 g $NaClL^{-1}$ added, respectively. As the salinity concentrations increased from 0 to 30 mg $NaClL^{-1}$, the average MLSS concentration increased from 1,245 to 1,735 $mgL^{-1}$. The SS concentration of supernatant in reactor which settled about 30 minutes was not severely difference between concentration of salt free reactor and one of those high salt contained reactors.

볏짚 및 석고시용(石膏施用)이 간척답(干拓畓) 직파(直播)벼의 초기생육(初期生育) 장해(障害)에 미치는 영향(影響) (The Influences of Rice Straw and Gypsum Applied to a Saline Soil on the Growth Status of rice Seedlings when Flooded Direct Sowing)

  • 황선웅;이춘수;이용재;곽한강;박내정
    • 한국토양비료학회지
    • /
    • 제23권1호
    • /
    • pp.34-39
    • /
    • 1990
  • 염농도(鹽濃度) 0.48%인 식질계(埴質系) 간척지(干拓地) 토양(土壤)에 볏짚과 석고(石膏)를 시용(施用)하고 담수(湛水)한 후 직파시간(直播時間)를 달리한 pot 시험(試驗)에서 벼 유묘(幼苗)의 초기(初期) 생육장해(生育障害) 원인(原因)을 조사(調査)하였다. 1. 발아(發芽)는 담수(湛水) 1일후(日後) 파종구(播種區)가 담수(湛水) 18일후(日後) 파종구(播種區)보다 양호(良好)하였고, 담수(湛水) 18일후(日後) 파종구(播種區)는 볏짚시용(施用)으로 발아율(發芽率)이 극히 불량(不良)하였다. 2. 대조구(對照區)에 비하여 볏짚시용(施用)으로 담수(湛水)중의 pH, $HCO_3{^-}$ 및 Volatile fatty acid 함량(含量)은 증가(增加)되었으나 EC, $SO_4$ 및 수용성(水溶性) 양(陽)이온의 총함량(總含量)은 감소(減少)되었으며, 석고(石膏)는 볏짚과 반대(反對)의 경향을 보였다. 3. 발아율(發芽率)과 담수(湛水)의 화학성분(化學成分) 간(間)에는 대부분 부(負)의 상관관계(相關關係)를 보였으며, 특히 파종(播種) 7일(日) 후(後) 담수(湛水)의 화학성분(化學成分)과 가장 관계(關係)가 높았다. 4. 볏짚시용(施用)에 의한 유묘(幼苗) 발아장해(發芽障害)는 담수(湛水)의 pH 상승(上昇)에 의한 $HCO_3{^-}$의 생성(生成) 및 점토(粘土)의 분산(分散)과 관계(關係)가 깊었으며, 발아후(發芽後) 유묘(幼苗)의 생육장해(生育障害)는 석고시용(石膏施用)으로 담수(湛水)의 EC, $SO_4$ 및 수용성(水溶性) 총양(總陽)이온등의 급격한 증가(增加)로 인한 염류장해(鹽類障害)로 추정(推定)된다. 5. 중탄산(重炭酸)의 생성(生成)은 담수(湛水)의 pH와 유의성(有意性) 있는 2차(次) 곡선적(曲線的) 회귀관계(回歸關係)를 보였으며 pH 7.5 이상일 때 급격한 증가현상(增加現象)을 보였다.

  • PDF

만경강 하구역에 분포하는 염생식물의 개체군 형성 전략에 관한 연구 (Population Formation Strategies of Halophytes in Mankyeong River Estuary)

  • 김창환;조두성;이경보;최송열
    • 한국환경생태학회지
    • /
    • 제20권3호
    • /
    • pp.299-310
    • /
    • 2006
  • 만경강 하구역 염습지에 우점 분포하는 5종 염생식물의 개체군 형성 전략에 대하여 유묘 출현율, 생물량, 뿌리 줄기길이생장, 교차이식 생존율, 토양환경 요인 등을 2005년 2월에서 10월까지 조사하였다. 유묘 출현 시기는 칠면초가 가장 빨랐으며 그다음으로 가는갯능쟁이, 퉁퉁마디, 갯개미취, 나문재 순으로 나타났다. 염생식물의 수분상태와 염도에 따른 발아율은 칠면초가 침수구 상태의 고온과 저염도에서, 퉁퉁마디가 고염도에서, 가는갯능쟁이와 갯개미취가 건조구와 침수구에서, 나문재가 건조상태의 고염도에서도 발아가 잘 되었다. 5종 염생식물의 교차이식 생존율은 저위염습지에 칠면초, 중위염습지에 퉁퉁마디, 가는갯능쟁이, 갯개미취, 고위염습지에 나문재가 높았다. 토양환경요인은 비슷하였으나 토성은 점토, 모래, 미사 순으로 높게 나타났다. 따라서 본 연구결과 5종 염생식물의 개체군 형성 전략은 칠면초는 저위염습지에, 퉁퉁마디, 가는갯능쟁이 그리고 갯개미취는 중위염습지에, 나문재는 고위염습지에 분포하여 이루어진다고 여겨진다.

Investigation of Soil Physico-chemical Properties in Saemangeum Reclaimed Tidal Land in Korea

  • Ahn, Byung-Koo;Lim, Yeon-Yi;Ko, Do-Young;Lee, Chang-Kyu;Kim, Jin-Ho;Song, Young-Ju;Lee, Jin-Ho
    • 한국토양비료학회지
    • /
    • 제49권4호
    • /
    • pp.347-354
    • /
    • 2016
  • This study was conducted to investigate the physical and chemical properties of soils in Saemangeum reclaimed lands. The investigated areas were total 5,020 ha which included 220 ha for Agricultural Life site, 2,450 ha for Tourism & Leisure site, 1,130 ha for Industrial & Research site, 820 ha for Bioenergy crop production site, and 400 ha for Rural City site. Soil samples consisting of the upper 20 cm from the surface were collected in every $200m{\times}500m$ of the each site in March and September, 2015. Particle size distribution of soils in the reclaimed land was 83.2% sand, 8.6% silt and 8.2% clay in average. Soil texture was distributed as 40.8% sandy soil, 35.5% loamy sand, and 19.7% sandy loam. Based on the investigation of soil chemical properties conducted in March, 2015, soil pH, electrical conductivity of a saturated soil paste extract (ECe), and exchangeable (Exch.) $K^+$ and $Mg^{2+}$ concentrations were higher than those of the optimum levels for upland soil, whereas soil organic matter content, available (Avail.) phosphate concentration, and Exch. $Ca^{2+}$ concentration were lower than those of the optimum ranges. Depending on the results of the soil chemical properties measured in September, 2015, soil pH, ECe, and Exch. $K^+$ concentration were higher than those of the optimum levels, but soil organic matter, Avail. phosphate, and Exch. $Ca^{2+}$ concentration were lower than the optimum ranges. In addition, distribution of sodic soil ranged between 41.4% and 50.0%, and saline soils were from 16.4 to 31.8%. Soils with pH values above 7.0 increased from 15.3% in March to 35.2% in September. Soils with ECe values over $4.8dS\;m^{-1}$ increased from 45.6% to 50.7%, whereas soils with the values below $2.0dS\;m^{-1}$ decreased from 42.8% to 36.9%.