• Title/Summary/Keyword: saline soil

Search Result 250, Processing Time 0.025 seconds

Underdrainage Effects on Soil Salinity and Growth of Rice in Gyehwa Reclaimed Saline Land (계화도 간탁지에서 암거배수가 토양의 염분농도와 벼의 생육 및 수량에 미치는 영향)

  • 김상수;이선용;한규흥;어임수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.61-67
    • /
    • 1997
  • This experiment was carried out from 1979 till 1983 to elucidate the underdrainage effect on soil salinity and growth of rice plastic underdrainage was established 5m and 8m intervals in April of 1979 and Jinjubyeo the medium maturing rice variety was transplanted by hand at late of May. The results are as follow; The desalination effect was higher in 5m interval underdrainage than 8m interval underdrainage and the salt content was lower than 0.3% at 1 year after in 5m interval, 2 years after in 8m interval underdrainage and 3 years after at control. Farther the distance from underdrainage position, less the desalinization rate that desalinization was least at center part of the underdrainage position. Desalinization effect was highest 30cm of soil depth and decreased deeper than it. Shorter the underdrainage interval, more the panicle number, heavier 1, 000 grain weight and higher the milled rice yield. But the milled rice yield wasn't significantly different between the underdrainage interval from 3 years after underdrainage.

  • PDF

Biological improvement of reclaimed tidal land soil (II) -Changes of soil-microbial populations in reclaimed tidal land- (해안간척지 토양의 생물학적 토성개량에 관한 연구 (제 2 ) -간척지토양에 있어서 생물의 화에 대하여-)

  • 홍순우;하영칠;이광웅
    • Korean Journal of Microbiology
    • /
    • v.6 no.4
    • /
    • pp.131-140
    • /
    • 1968
  • The soil of the reclaimed tidal land, located in Chogi-ri, Is. Kanghwa, Korea was used in this experiment. The experimented soil samples were collected from 18 sites with its time elapsed after the shore-protection works, soil-depth and the vegetation of saline plants, and at each site samplings were conducted monthly from March through October, 1968, for the purposes of examining the changes of microbial populations for the microbes such as bacteria, actinomycetes and fungi, by using the dilution plate method. The numbers of the microbes in these soils generally showed lower levels comparing with those of other soils. The more time elapsed after the reclamation, the higher numbers of the microbes inhibited the soils. Higher populations were there in the surface soils than in the lower part of the area. The surface soils included comparatively better conditions in aeration and contents of organic matter than in the lower part, and this fact was. same as in general soils. However, not so was this in the case of March, April and October due to the higher soil temperatures in the lows. At the experimental sites where the halophytes such as Salicorniu were grown vigourously, the more densly the plants grew, the higher populations of actinomycetes and fungi were, but not in the case of bacterial population. This means, in this soil with dense Salicornia, it is difficult to obtain good-natured soils in short time without a higher population of bacteria. For the rapid utilization of the land soil, in this view of point, the methods increasing the number of bacteria in the soil are needed as well as the cultivation and harvesting Salicorniu which indicated in the privious paper(Hong, et al., 1969a). According to the results of this experiment, the changes of soil-microbial populations in the reclaimed tidal land soil containing high salinity depend deeply upon the interrelations of many environmental factors such as soil-salinity, soil-components and contents, concentration of organic matters, pH, aeration, and air and soil temperatures, as in the general soils.

  • PDF

Yield Response of Chinese Cabbage to Compost, Gypsum, and Phosphate Treatments under the Saline-sodic Soil Conditions of Reclaimed Tidal Land (퇴비, 석고, 인산으로 개량한 염류-나트륨성 간척지 토양에서 배추의 생육)

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Ro, Hee-Myong;Yun, Seok-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.587-595
    • /
    • 2016
  • Salt stress in crops in reclaimed tidal lands can be reduced by applying soil amendments. To evaluate the effects of compost, gypsum, and phosphate on the growth of Chinese cabbage in saline-sodic soil conditions, we conducted a pot experiment in 2013 and 2014. The treatments consisted of a standard fertilizer application of a mix of compost and N-P-K fertilizer (S) and standard fertilizer applications with additional compost (S + C), gypsum (S + G), phosphate (S+P), and gypsum and phosphate (S + GP). The mean dry matter yield of cabbage in 2014 was three times as great as that in 2013, although soil EC (Electrical conductivity) in 2014 was not decreased. However, the mean ratio of sodium ion in soil solution ($SAR_{1:5}$) significantly decreased from $17.3{\pm}1.1$ in 2013 to $11.2{\pm}2.7$ in 2014. Application of gypsum had the greatest positive impact on the growth of Chinese cabbage. The S + G treatment increased dry matter yield by 7.0 (48.2) and 7.9 g/plant (16.6%) in 2013 and 2014, respectively, compared to the S treatment. Applying gypsum increased soil EC, but decreased $SAR_{1:5}$ by 14 and 38% in 2013 and 2014, respectively. The application of compost and phosphate had a small effect on the growth of Chinese cabbage. These results suggest that applying gypsum in reclaimed tidal lands can reduce the sodicity of the soil and improve crop growth.

Determination of Nitrogen Application Rates with Paddy Soil Types for Production of High Rice Quality (고품질 완전미 생산을 위한 논 토양유형별 질소 시비량)

  • Song, Yo-Sung;Lee, Ki-Sang;Jung, Byeong-Gan;Jun, Hee-Joong;kwag, Kang-Su;Yeon, Byeong-Yeol;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.86-94
    • /
    • 2006
  • The primary concern on fertilizer recommendations on paddy soils in Korea is not high rice yield but high rice quality, sustainable rice yield, and less environmental loads these days. Based on soil survey data, the paddy soils in Korea were classified into five large management types ; normal, sandy, immatured, poorly drained, saline soil. In order to establish the optimum level of nitrogen fertilizer to increase the rate of head rice yield, field experiments were conducted at 24 farmhouses throughout the country with nitrogen fertilizer treatment levels of 0, 50, 70, 90, 110, 140, $170kg\;ha^{-1}$ from 2003 to 2004. As the result of the experiment, the optimum rates of nitrogen fertilizer for improving rice quality were $90kg\;ha^{-1}$ in normal, sandy, and poorly drained soils, $100kg\;ha^{-1}$ in immatured soils, and $112kg\;ha^{-1}$ in saline soils where the content of NaCl in soil was below 0.1%. The optimum rates of nitrogen fertilizer were determined in view of head rice percent, protein content, and palatability value of rice.

Influence of Varying Degree of Salinity-Sodicity Stress on Enzyme Activities and Bacterial Populations of Coastal Soils of Yellow Sea, South Korea

  • Siddikee, Md. Ashaduzzaman;Tipayno, Sherlyn C.;Kim, Ki-Yoon;Chung, Jong-Bae;Sa, Tong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • To study the effects of salinity-sodicity on bacterial population and enzyme activities, soil samples were collected from the Bay of Yellow Sea, Incheon, South Korea. In the soils nearest to the coastline, pH, electrical conductivity ($EC_e$), sodium adsorption ratio (SAR), and exchangeable sodium percentage (ESP) were greater than the criteria of saline-sodic soil, and soils collected from sites 1.5-2 km away from the coastline were not substantially affected by the intrusion and spray of seawater. Halotolerant bacteria showed similar trends, whereas non-tolerant bacteria and enzymatic activities had opposite trends. Significant positive correlations were found between EC, exchangeable $Na^+$, and pH with SAR and ESP. In contrast, $EC_e$, SAR, ESP, and exchangeable $Na^+$ exhibited significant negative correlations with bacterial populations and enzyme activities. The results of this study indicate that the soil chemical variables related with salinity-sodicity are significantly related with the sampling distance from the coastline and are the key stress factors, which greatly affect microbial and biochemical properties.

Effects of Saline Irrigation Water on Crop Growth in Strawberry and Red Radish (딸기 및 적환무의 관개용수 염도수준에 따른 생육영향 분석)

  • Kim, Soo-Jin;Bae, Seung-jong;Kim, Hakkwan;Jeong, Hanseok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.85-94
    • /
    • 2020
  • Since the salinity of irrigation water is a critical constraint to the production of certain vegetable crops, salinity was considered as one of the most important factors of irrigation water. The purpose of this study were to monitor and assess the effects of saline irrigation water on strawberry and red radish growth in protected cultivation. One control and three treatments, which were differentiated according to the level of salinity in irrigated water, were employed for each vegetable to assess the effects of the irrigation with saline water. Monitoring has shown that using irrigation water with salinity above a certain level causes excessive accumulation of sodium (Na+) in both strawberry and red radish. Increased Na+ content was analyzed to be able to decrease the sugar content in strawberry. In addition, the salinity higher than the threshold level of irrigation water was found to reduce the growth and yield of strawberry and red radish. This study could contribute to suggest criteria for safe use of saline water in protected cultivation, although long-term monitoring is needed to get more representative results.

Site Investigation of a Reclaimed Saline Land by the Small Loop EM Method (소형루프 전자탐사법에 의한 간척지 지반조사)

  • Kim, Ki-Ju;An, Dong-Kuk;Cho, In-Ky;Kim, Bong-Chan;Kyung, Keu-Ha;Hong, Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2010
  • The small loop electromagnetic (EM) method is a fast and convenient geophysical tool which can provide resistivity distribution of shallow subsurface. Especially, it can be a useful alternative of resistivity method in a very conductive environment such as a reclaimed saline land. We applied the multi-frequency small loop EM method for the site investigation of reclaimed saline land. We inverted the measured EM data using one dimensional (1D) inversion program and merged to obtain three dimensional (3D) resistivity distribution over the survey area. Finally, comparing he EM results with the drill log and measured soil resistivity sampled at 16 drill holes, we can define the site character such as thickness of landfill, salinity distribution, and etc.

Effects of Salinity Level and Irrigation Rate on Kentucky Bluegrass (Poa pratensis L.) Growth and Salt Accumulation in Sand Growing Media Established Over the Reclaimed Saline Soil (염해지 토양을 기반으로 조성된 모래 지반구조에서 관수용수의 량 및 염농도에 따른 토양내 염류 집적과 켄터키 블루그래스의 생육에 미치는 영향)

  • Rahayu, Rahayu;Yang, Geun-Mo;Choi, Joon-Soo
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to obtain information on rates and salinity levels of irrigation for growth of Kentucky bluegrass by minimizing the hazard of salt accumulation in the sand based growing medium. Root zone profile consists of 20 cm sand based top soil, 20 cm of coarse sand as layer to interrupt capillary rise and 10 cm of reclaimed paddy soil as a base of the root zone profile. Topsoil was a mixture of dredged sand and peat with a ratio of 95%: 5% by volume. The columns were soaked into 5 cm depth saline water reservoir with salinity level of 3-5 $dSm^{-1}$. Salinity levels of irrigation water were 0, 2 and 3 $dSm^{-1}$. Irrigation rates were 3.8, 5.7 and 7.6 mm $day^{-1}$ which were equivalent to 70%, 100% and 130% of average ET (evapotranspiration) rate of Kentucky bluegrass, and irrigation interval was 3 days. Salt accumulation was due to irrigated water and moved up water from shallow water base. At the end of second year, the accumulation of salt in the rootzone showed ECc of3.86, 4.7 and 5.1 $dSm^{-1}$, and SAR of 19.2, 23.9 and 27.5 when the salinities were 0, 2 and 3 dS $m^{-1}$, respectively. Irrigation rates of 100% and 130% of ET rate with saline water did not decrease ECe and SAR in growing media. The growth of KEG was influenced by irrigation rate in the $1^{st}$ year, however, salinity level was more critical in the $2^{nd}$ year. Compared to non-saline water, saline water of 2 and 3 dS $m^{-1}$ resulted in decreased visual quality by 3.2% and 16.5%, by 6.4% and 39.3% in clipping weight, and by 5.5% and 5.0% in root mass, respectively.

Native Tree Species of Tolerance to Saline Soil and Salt Spray Drift at the Coastal Forests in the West-Sea, Korea (한국 서해안의 내염성 및 내조성 자생수종)

  • Kim, Do-Gyun
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2010
  • This study was carried out to apply basic data of the native trees for planting in the salinity area by the vegetation ecological selection. Which focused on native woody species to the tolerances of saline soil and salt spray drift on the coastal forests in the West-Sea, Korea. The soil salinity($EC_{1:5}$) was 0.11dS$m^{-1}$, ranging of 0.00dS$m^{-1}$~0.68dS$m^{-1}$. The soil salinity was gradually decreasing from Belt I to Belt Ⅳ except the Belt I in some coastal windbreaks. The order of decreasing soil salinity was Belt I>Belt II>Belt III>Belt Ⅳ and the soil salinity was $EC_{1:5}$ 0.14dS$m^{-1}$, 0.11dS$m^{-1}$, 0.10dS$m^{-1}$, and 0.08dS$m^{-1}$, respectively. The total 181 taxa consisted of 52 families, 104 genus, 157 species, and 24 varieties were recorded as the trees tolerating to both soil salinity and salt spray drift. The trees emerged in the highest degree of salinity($EC_{1:5}$ 0.51dS$m^{-1}$) was nothing but appearanced Pinus thunbergii Parl., Smilax china L., Quercus dentata Thunb. ex Murray, Quercus serrata Thunb. ex Murray and so on at the level of singular and ideal value. The emerged trees in the high salinity of $EC_{1:5}$0.41dS$m^{-1}$~0.50dS$m^{-1}$ were Albizia kalkora Prain, Melia azedarach L., Paederia scandens (Lour.) Merr. var. scandens These species were trees of tolerance to saline soil. The emerged woody species in all belts were Pinus rigida Mill., Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl., Juniperus rigida Siebold & Zucc. and so on. The woody species with high important value(I.V.) were Pinus densiflora Siebold & Zucc., Pinus thunbergii Parl., Pseudosasa japonica (Siebold & Zucc. ex Steud.) Makino, Smilax china L., Platycarya strobilacea Siebold & Zucc. var. strobilacea for. strobilacea and so on, which can be classified as highly tolerant native trees to salt spray drift.

Measurement of Exchangeable Cations in Salt Accumulated Vinyl Greenhouse Soils (염류집적 비닐하우스 토양의 교환성 양이온 측정)

  • Chung, Jong-Bae;Lee, Yong-Se;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • BACKGROUND: Although 1 M $NH_4OAc$ (pH 7.0) is predominantly used as the extractant of exchangeable cations in agricultural soils, this method is unsuitable for extracting the cations in saline and calcareous soils. This study was performed to select a proper method to determine exchangeable cations in vinyl greenhouse soils. METHODS AND RESULTS: Exchangeable cations (Ca, Mg, K, Na) in saline vinyl greenhouse soils were determined after extraction with 1 M $NH_4OAc$ (pH 7.0 and 8.5) and 1 M alcoholic $NH_4Cl$ (pH 8.5). Sum of exchangeable cations of the soils extracted with 1 M $NH_4OAc$ at pH 7.0 was 1.9-2.5 times greater than soil cation exchange capaity determined at pH 7.0, even though soluble salts were pre-removed. A similar result was found when the cations were extracted with 1 M $NH_4OAc$ at pH 8.5. Those results are mostly due to the overestimation of exchangeable Ca and Mg, linked to a partial dissolution of sparingly soluble salts in $NH_4OAc$ solution. When extracted with 1 M alcoholic $NH_4Cl$ at pH 8.5, extractable Ca and Mg decreased significantly due to the lower solubility of Ca and Mg carbonates in the extractant. And the sum of exchangeable cations was very close to the corresponding exchange capacity of soils. CONCLUSION: Alcoholic $NH_4Cl$ (pH 8.5) is proposed as a reliable extractant in determination of exchangeable cations in saline vinyl greenhouse soils. And soluble salts should be removed prior to the extraction of exchangeable cations.