DOI QR코드

DOI QR Code

Yield Response of Chinese Cabbage to Compost, Gypsum, and Phosphate Treatments under the Saline-sodic Soil Conditions of Reclaimed Tidal Land

퇴비, 석고, 인산으로 개량한 염류-나트륨성 간척지 토양에서 배추의 생육

  • Lee, Jeong-Eun (Department of Bio-environmental Chemistry, Wonkwang University) ;
  • Seo, Dong-Hyuk (Department of Bio-environmental Chemistry, Wonkwang University) ;
  • Ro, Hee-Myong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Yun, Seok-In (Department of Bio-environmental Chemistry, Wonkwang University)
  • 이정은 (원광대학교 생물환경화학과) ;
  • 서동혁 (원광대학교 생물환경화학과) ;
  • 노희명 (서울대학교 농생명공학부) ;
  • 윤석인 (원광대학교 생물환경화학과)
  • Received : 2015.08.17
  • Accepted : 2016.06.22
  • Published : 2016.08.31

Abstract

Salt stress in crops in reclaimed tidal lands can be reduced by applying soil amendments. To evaluate the effects of compost, gypsum, and phosphate on the growth of Chinese cabbage in saline-sodic soil conditions, we conducted a pot experiment in 2013 and 2014. The treatments consisted of a standard fertilizer application of a mix of compost and N-P-K fertilizer (S) and standard fertilizer applications with additional compost (S + C), gypsum (S + G), phosphate (S+P), and gypsum and phosphate (S + GP). The mean dry matter yield of cabbage in 2014 was three times as great as that in 2013, although soil EC (Electrical conductivity) in 2014 was not decreased. However, the mean ratio of sodium ion in soil solution ($SAR_{1:5}$) significantly decreased from $17.3{\pm}1.1$ in 2013 to $11.2{\pm}2.7$ in 2014. Application of gypsum had the greatest positive impact on the growth of Chinese cabbage. The S + G treatment increased dry matter yield by 7.0 (48.2) and 7.9 g/plant (16.6%) in 2013 and 2014, respectively, compared to the S treatment. Applying gypsum increased soil EC, but decreased $SAR_{1:5}$ by 14 and 38% in 2013 and 2014, respectively. The application of compost and phosphate had a small effect on the growth of Chinese cabbage. These results suggest that applying gypsum in reclaimed tidal lands can reduce the sodicity of the soil and improve crop growth.

본 연구는 염류-나트륨성 토양 조건에서 작물의 생육에 미치는 퇴비, 석고, 인산의 효과를 평가하기 위해, 2013년과 2014년에 배추를 포트재배하였고, 퇴비와 화학비료를 시비한 표준시비 처리구(S), 표준시비에 퇴비 추가 처리구(S + C), 석고 추가 처리구(S + G), 인산 추가 처리구(S + P), 석고-인산 추가 처리구(S + GP) 등 다섯 처리를 두어 비교하였다. 배추 건물중은 2013년과 비교하여 2014년에 크게 증가하였다. 토양의 전기전도도(EC)가 2013년에 비해 2014년에 감소하지 않았지만, 토양용액내 양이온 중 나트륨의 평균 비율($SAR_{1:5}$)이 2013년 $17.3{\pm}1.1$에서 2014년 $11.2{\pm}2.7$로 크게 감소하였다. 토양개량제 중에서 석고를 시용하였을 때 배추의 생육이 가장 좋았다. 표준시비 처리구와 비교하여 석고 추가 처리구에서 배추 건물중이 2013년에 7.0g/plant(48.2%) 더 높았고 2014년에 7.9g/plant(16.6%) 더 높았다. 석고 시용 시 오히려 토양 전기전도도가 증가하여 배추 생육에 부정적이었지만, SAR이 2013년과 2014년에 각각 14%, 38% 감소하여 배추생육에 긍정적인 효과가 있었다. 본 연구 결과는 염류-나트륨성 토양이 분포하는 간척지에 석고를 시용하여 토양의 나트륨 비율을 개선함으로써 작물의 생육을 촉진시킬 수 있다는 것을 시사해 주었다.

Keywords

References

  1. Blum J, Caires EF, Ayub RA, Da Fonseca AF, Sozim M, Fauate M (2011) Soil chemical attributes and grape yield as affected by gypsum application in southern Brazil. Commun Soil Sci Plant Anal 42:1434-1446. doi:10.1080/00103624.2011.577861
  2. Chen L, Dick WA (2011) Gypsum as an agricultural amendment: general use quidelines. Bulletin, 945. Ohio State University Extention, Columbus, OH, pp 5-17
  3. Choi JS (2007) Nitrogen removal from tidal marsh soils as affected by soil salinity and the presence of organic carbon source. Thesis for degree of Master. Seoul National University, Seoul, Korea
  4. Choudhary OP, Josan AS, Bajwa MS, Kapur ML (2004) Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field Crops Res 87:103-116. doi:10.1016/j.fcr.2003.10.001
  5. Choudhary OP, Ghuman BS, Singh B, Thuy N, Buresh RJ (2011) Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice-wheat cropping system in a calcareous soil. Field Crops Res 121:373-372. doi:10.1016/ j.fcr.2011.01.004
  6. Kim JS, Hyun TK (2011) Effect of NaCl stress on the growth, antioxidant materials, and inorganic ion content in head lettuce seedlings. Korean J Hortic Sci Technol 29:433-440
  7. Kim JS, Shim IS, Kim MJ (2010) Physiological response of Chinese cabbage to salt stress. Korean J Hortic Sci Technol 28:343-352
  8. Lee JE, Yun SI (2014) Effects of compost and gypsum on soil water movement and retention of a reclaimed tidal land. Korean J Soil Sci Fert 47:340-344. doi:10.7745/kjssf.2014.47.5.340
  9. Lee JE, Seo DH, Yun SI (2015) Salt removal in a reclaimed tidal land soil with gypsum, compost, and phosphate amendment. Korean J Soil Sci Fert 48:326-331. doi:10.7745/kjssf.2015.48.5.326
  10. Munns R, Termaat A (1986) Whole-plant responses to salinity. Aust J Plant Physiol 13:143-160. doi:10.1071/PP9860143
  11. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239-250. doi:10.1046/j.0016-8025.2001.00808.x
  12. Rasouli F, Pouya AK, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma 193-194:246-355. doi:10.1016/j.geoderma.2012.10.001
  13. Ro HM, Yun SI, Choi WJ (2005) Biomass production and N uptake of Chinese cabbages as affected by N rates under elevated atmospheric $CO_2$ and temperature. J Kor Soc Hort Sci 46:126-131
  14. Scherer HW (2001) Sulfur in crop production. Eur J Agron 14:81-111. doi:10.1016/S1161-0301(00)00082-4
  15. Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, smith J (2011) Salinity effects on carbon mineralization in soils of varying texture. Soil Biol Biochem 43:1908-1916. doi:10.1016/j.soilbio.2011.05.013
  16. Yaduvanshi NPS, Sharma DR (2008) Tillage and residual organic manures/chemical amendment effects on soil organic matter and yield of wheat under sodic water irrigation. Soil Tillage Res 98:11-16. doi:10.1016/j.still.2007.09.010
  17. Yun SI, Ro HM (2009) Natural 15N abundance of plant and soil inorganic-N as evidence for over-fertilization with compost. Soil Biol Biochem 41:1541-1547. doi:10.1016/j.soilbio.2009.04.014
  18. Yun SI, Ro HM (2014) Can nitrogen isotope fractionation reveal ammonia oxidation response to varying soil moisture?. Soil Biol Biochem 76:136-139. doi:10.1016/j.soilbio.2014.04.032
  19. Yun SI, Ro HM, Choi WJ, Han GH (2011) Interpreting the temperature-induced response of ammonia oxidizing microorganisms in soil using nitrogen isotope fractionation. J Soils Sediments 11:1253-1261. doi:10.1007/s11368-011-0380-1
  20. Yun SI, Ro HM, Choi WJ, Chang SX (2006) Interactive effects of N fertilizer source and timing of fertilization leave specific N isotopic signatures in Chinese cabbage and soil. Soil Biol Biochem 38:1682-1689. doi:10.1016/j.soilbio.2005.11.022
  21. Yun SY, Shin JD (2011) Effects of TLB Microbial fertilizer application on soil chemical properties, microbial flora and growth of Chinese cabbage. Korean J Soil Sci Fert 34:8-16
  22. Zia MH, Ghafoor A, Saifullah, Boers ThM (2006) Comparison of sulfurous acid generator and alternate amendments to improve the quality of saline-sodic water for sustainable rice yields. Paddy Water Environ 4:153-162. doi:10.1007/s10333-006-0043-9

Cited by

  1. The effects of gypsum and mulch applications on reclamation parameters and physical properties of an alkali soil vol.190, pp.6, 2018, https://doi.org/10.1007/s10661-018-6669-4
  2. Crop response and quality of soil as affected by hyperthermophilic compost in Tai-Lake region of China vol.43, pp.7, 2016, https://doi.org/10.1080/01904167.2020.1711937