• Title/Summary/Keyword: salicylaldehyde

Search Result 51, Processing Time 0.021 seconds

Electrochemical Properties of Binuclear Cobalt (II) Complexes with Tetradentate Schiff Base in Aprotic Solvents (III) (비수용매에서 이핵성 네자리 Schiff Base Cobalt(II) 착물들의 전기화학적 성질 (제 3 보))

  • Chjo Ki-Hyung;Choi Yong-Kook;Seo Seong-Seob;Lee Song-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.379-388
    • /
    • 1991
  • We synthesized the binuclear Tetradentate Schiff base cobalt (II) complexes; [Co(II)$_2$(SMPD)$_2$(L)$_2$] and [Co(II)$_2$(SPPD)$_2$(L)$_2$] (where, SMPD: N,N'-bis(salicylaldehyde)-m-phenylenediimine, SPPD: N,N'-bis(salicylaldehyde)-p-phenylenediimine, L: Py, DMSO and DMF). We identified the binuclear structure of these complexes by elemental analysis, IR-spectrum, and T. G. A. According to the results of cyclic voltammetry and DPP measurements in aprotic solvents containing 0.1M TEAP as supporting electrolyte, it was found that diffusionally controlled redox process of two step for one electron was reversible or quasi reversible process in 0.1M TEAP-pyridine and 0.1M TEAP-DMSO solution at mononuclear complexes; [Co(II)(SOPD)(L)$_2$]. But, we knew that diffusionally controlled reduction processes of four steps with one electron for binuclear [Co(II)$_2$(SMPD)$_2$(L)$_2$] and [Co(II)$_2$(SPPD)$_2$(L)$_2$] complexes was Co(III)$_2\;{\longrightarrow^e}$ Co(III)Co(II) ${\longrightarrow^e}$ Co(II)$_2\;{\longrightarrow^e}$ Co(II)Co(I) ${\longrightarrow^e}$ Co(I)$_2$ in aprotic solvents.

  • PDF

Synthesis of Cobalt(II), Nickel(II) and Copper(II) Complexes with Tetradentate Schiff Base Ligand of o-BSDT $H_2$ and Electrochemical properties in DMSO (네자리 Schiff Base 리간드의 Cobalt(II), Nickel(II) 및 Copper(II) 착물의 합성과 DMSO용액에서 전기화학적 성질)

  • Ki-Hyung Chjo;Jong-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.509-519
    • /
    • 1987
  • The tetradentate Schiff base ligand, 3,4-bis(salicylidene diimine) toluene, have been prepared by the reaction of salicylaldehyde with 3,4-diaminotoluene by Duff method. The Schiff base ligand reacts with Ni(II), Co(II), and Cu(II) ions to form new complexes, [Ni(o-BSDT)${\cdot}(H_2O)_2$], [Co(o-BSDT)${\cdot}(H_2O)$], and [Cu(o-BSDT)]. It seems that Ni(II) and Ni(II) complexes are hexacoordinated with the Schiff base ligand and two molecules of water, while the Cu(II) complexes are tetracoordinated with the Schiff base. The mole ratio of tetradentate Schiff base ligand to metals was found to be 1 : 1. The redox chemistry of these complexes was investigated by polarography and cyclic voltammetry with glassy carbon electrode in DMSO with 0.1M TEAP${\cdot}$[Ni(o-BSDT)${\cdot}(H_2O)_2$] hav EC reaction mechanisms which undergo a irreversible electron transfer followed by a fast chemical reaction. [Co(o-BSDT)${\cdot}(H_2O)_2$] undergoes a reduction of Co(II) to Co(I) and a oxidation of Co(II) to Co(III), and [Cu(o-BSDT)] undergoes a reduction of Cu(II) to Cu(I).

  • PDF

Solvent Extraction of Trace Amount of Ni(II) in Sea Water by using Salen[N,N'-bis(salicylidene)ethylenediamine] (Salen[N,N'-bis(salicylidene)ethylenediamine]을 이용한 해수 중 극미량 니켈의 용매추출)

  • In, Gyo;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.481-488
    • /
    • 2004
  • Solvent extraction of Ni(II) into a chloroform by using salen[N,N'-Bis (salicylidene)-ethylenediamine] as a ligand has been studied. Salen was synthesized from ethylenediamine and salicylaldehyde by simple condensation reaction in an ethanol. Salen formed a 1 : 1 complex with Ni(II) and its extraction constant was $10^{5.12}$. For the determination of Ni(II) in sea water samples, some experimental conditions such as pH of solution, amount of salen, acid type and concentration for back extraction, extraction time, and influence of foreign ions were optimized by using a synthetic sea water. The sea water of which the composition was similar to a natural sea water was synthesized in this laboratory. Trace Ni(II) was extracted into the chloroform in the weak basic solution above pH 8. And the nickel could be quantitatively extracted with the concentration of salen higher than $1.2{\times}10^{-4}mol/L$. This concentration was more than 180 times of Ni(II) in the solution with a mole ratio. Real samples of Korean coastal sea water were analyzed under optimized conditions. Even though Ni(II) was not detected in these samples. Recoveries more than 98% were obtained in the samples which 40 ng/mL of Ni(II) was spiked. And detection limit of proposed method was 1.3 ng/mL. From these results, it could be known that salen of this type would be applied for the determination of trace metals as an organic chelating reagent.

Synthesis of Transition Metal Cu(II) Complexes and Their Electrochemical Properties (Cu(II) 전이금속 착물의 합성과 전기화학적 성질에 관한 연구)

  • Chae, Hee-nam;Choi, Yong-kook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.719-725
    • /
    • 1998
  • Tridentate Schiff base ligands were prepared by the reactions of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with 2-aminophenol and 2-amino-p-cresol. And then Cu(II) complexes of those ligands were synthesized. The structures and properties of ligands and their complexes were studied by elemental analysis, $^1H$-NMR, IR, UV-visible spectra, and thermogravimetric analysis. The mole ratio of Schiff base to the metal of complexes was found to be 1:1. Cu(II) complexes were contemplated to be four-coordinated square planar configuration containing one water molecule. The redox process of ligands and complexes in DMSO solution containing 0.1 M TBAP as a supporting electrolyte was investigated by cyclic voltammetry and differential pulse voltammetry with glassy carbon electrode. The redox process of the tridentate Schiff base ligands was totally irreversible. The redox process of Cu(II) complexes was quasi-reversible and diffusion-controlled as one electron by one step process Cu(II)/Cu(I). The reduction potentials of the Cu(II) complexes shifted in the positive direction in the order of [Cu(II)(HNIPC)($H_2O$)]>[Cu(II)(HNIP)($H_2O$)]>[Cu(II)(SIP)($H_2O$)]>[Cu(II)(SIPC)($H_2O$)].

  • PDF

Palladium(II) Schiff Base Complexes Derived from Allylamine and Vinylaniline

  • Uh, Yoon-Seo;Zhang, Hai-Wen;Vogels, Christopher M.;Decken, Andreae;Westcott, Stephen A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.986-990
    • /
    • 2004
  • Condensation of salicylaldehyde $(2-HOC_6H_4C(O)H)$ with allylamine afforded the unsaturated salicylaldimine, $2-HOC_6H_4C(H)=NCH_2CH=CH_2$. Similar reactivity was observed with substituted salicylaldehydes. Further reaction of these Schiff bases with palladium acetate or $Na_2PdCl_4$ afforded complexes of the type $PdL_2$, where L = deprotonated Schiff base. The molecular structure of the parent salicylaldimine palladium complex $[trans-(2-OC_6H_4C(H)=NCH_2CH=CH_2)_2Pd]$ (1) was characterized by an X-ray diffraction study. Crystals of 1 were monoclinic, space group $P2_1/n,\;a\;=\;14.0005(9)\;{\AA},\;b\;=7.2964(5)\;{\AA},\;c\;=\;17.5103(12)\;{\AA},\;{\beta}\;=\;100.189(1)^{\circ}$, Z = 4. Analogous chemistry with 4-vinylaniline also gave novel palladium complexes containing a pendant styryl group. Crystals of $[trans-(2-HOC_6H_4C(H)=N-4-C_6H_4CH=CH_2)_2Pd]$ (4) were monoclinic, space group $P2_1/c$, a = 13.7710(14) ${\AA}$, b = 11.0348(11) ${\AA}$, c = 7.8192(8) ${\AA}$, ${\beta}\;=\;98.817(2)^{\circ}$, Z = 2.

Spectroscopic characterization of N,N'-bis(salicylidene)pentane-1,3-diamine nickel(II) complex

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • The $N_2O_2$ tetradentate Schiff base ligand, N,N'-bis(salicylidene)pentane-1,3-diamine (Salpn), coupled with 1:2 concentration ratio of 1,3-diaminopentane and salicylaldehyde was used to produce a series of macrocyclic Nikel(II) complexes. In the metal complexation, it was observed that Salpn macrocyclic ligand can adopt more than a metal ion giving an unique multinuclear metal complexes including Ni(II)Salpn and $Ni(II)_3(Salpn)_2$. Characteristic IR ${\upsilon}(M-O)$ peaks for Ni(II)Salpn and $Ni(II)_3(Salpn)_2$ were observed to be $1028cm^{-1}$ and $1024cm^{-1}$, respectively. Characteristic UV-Vis absorption ${\lambda}_{max}$ peaks for $Ni(II)_3(Salpn)_2$ were observed to be 241nm and 401 nm. Structural characterization of $Ni(II)_3(Salpn)_2$ by NMR exhibits that the salicylidene ring moiety has two different resonance signals originated from the magnetically asymmetric diligand and trinuclear bis complex. Complete NMR signal assignments and characterizations elucidating structural features of $Ni(II)_3(Salpn)_2$ were described in detail.

Acaricidal Components of Medicinal Plant Oils Against Dermatophagoides farinae and Dermatophagoides pteronyssinus

  • Cho, Jang-Hee;Sung, Bo-Kyung;Lim, Mi-Youn;Kim, Hyeon-Jin;Lee, Sang-Guei;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.631-634
    • /
    • 2004
  • The oils of Acorus gramineus, Cinnamomum sieboldii, Eugenia aromatica, and Inula helenium were tested for their acaricidal activity against Dermatophagoides farinae and D. pteronyssinus. Responses varied according to dose and mite species. As compared to the oils, the oil most toxic to D. farinae and D. pteronyssinus was E. aromatica, followed by C. sieboldii, A. gramineus, and I. helenium. On the basis of $LD_{50}$ values of the oils in A. gramineus, C. sieboldii, and E. aromatica, the compound most toxic against D. farinae and D. pteronyssinus was eugenol congeners (isoeugenol>eugenol>acetyleugenol) followed by benzyl benzoate, salicylaldehyde, safro1, DEET, cinnamyl alcohol, and 3-carene. As a naturally occurring acaricide, these oils and eugenol congeners could be useful as new acaricidal agents against Dermatophagoides spp.

The Study on the Reactivity of Dioxygen Bridged Palladium Complexes Having ${\pi}$-Allyl Ligands (${\pi}$-알릴리간드를 갖는 산소가교 팔라듐착화합물의 반응성에 관한 연구)

  • Pyeong Jin Chung
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 1986
  • This study is related to reactivity of dioxygen bridged palladium complexes having ${\pi}$-allyl ligands. In this case, new dioxygen bridged palladium complexes were prepared using superoxide ion$(O_2^-)$ as an oxygen source. Reactions of the dioxygen palladium complexes prepared in the study were examined in order to clarify the nature of the coordinated dioxygen. Treatments of a solution of the dioxygen bridged palladium complexes in benzene by water, methanol and acetic acid gave hydrogen peroxide $(H_2O_2)$ as hydroxy-, methoxy-, and acetoxybridged palladium complexes, respectively. The dioxygen bridged palladium complexes reacted also with substitution phenols of salicylaldehyde, 8-hydroxyquinoline and active methylenes of acetylacetone, dimethyl malonate to afford mononuclear complexes of palladium and hydrogen peroxide. The results suggest that dioxygen is coordinated as peroxo $(O_2^{2-})$ in the complexes and behaves as a strong base.

  • PDF

A Study on the Reactivity of Dioxygen Bridged Palladium Complexes Having Amine Ligands (아민을 리간드로 갖는 산소가교 팔라듐 착화합물의 반응성에 관한 연구)

  • Chung, Pyung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.3
    • /
    • pp.471-481
    • /
    • 1992
  • This study is related to the reactivity of dioxygen bridged palladium complexes having amine ligands. New dloxygen bridged palladium complexes were prepared using superoxide ion(${O_2}^-$) as an oxygen source. The reactions of dioxygen palladium complexes prepared in the study were examined in order to clarify the nature of the coordinated dioxygen. Treatments of a solution of the dioxygen bridged palladium complexes in benzene by water, methanol, acetic acid gave hydrogen peroxide($H_2O_2$) and hydroxy, methoxy, acetoxy-bridged palladium complexes, respectively. The dioxygen bridged palladium complexes reacted with substitution phenols of salicylaldehyde, 8-hydroxyquinoline and active mothylenes of acetylacetone, dimethyl malonate to afford mononuclear complexes of palladium and hydrogen peroxide. Furthermore, she dioxygen bridged palladium complexes changed to acetonyl bridged palladium complex and hydrogen peroxide reacting with acetone. The results suggest that dioxygen is coordinated as peroxo (${O_2}^{2-}$) in the complexes and behaves as a strong base.

  • PDF

Study on Formation and Properties of Dioxomolybdenum Complexes (디옥소몰리브덴 착물의 합성과 그 성질에 대한 연구)

  • Sang-Oh Oh;Bon-Kweon Koo
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.441-448
    • /
    • 1986
  • Dioxobis(sub.-salicylaldiminato) molybdenum (VI) complexes, $MoO_2\;(X-sal-N-R)_2,\;(X=H,\;5-CH_3,\;R=C_6H_5,\;p-F-C_6H_4,\;m-Cl-C_6H_4,p-I-C_6H_4\;and\;p-C_2H_5-C_6H_4)$, have been prepared by reactions of dioxobis(sub.-salicylaldehydato) molybdenum (VI), $MoO_2(X-sal)_2$ with primary amines, in which $MoO_2(X-sal)_2$ complexes were obtained by acidification of a mixture solution of ammonium paramolybdate in water and appropriate salicylaldehyde in methanol. All these complexes show two strong Mo=O stretching imodes in the 900-940$cm^{-1}$ and p.m.r. spectra exhibited only one signal for the azomethine group. These results confirmed that the complexes are six-coordinated octahedron with a $cis-MoO_2$ group and the geometrical configurations of the complexes possess a C2 axis of symmetry. From the mass analyses of the complexes, it found that the composition ratios of $MoO_2$ : ligand are 1 : 2. The charge transfer transition corresponding to N-Mo, and O-Mo occured at 29,000$cm^{-1}$ and 32,000$cm^{-1}$ respectively. Where, the complexes were found to be non-ionic materials by conductivity measurements in dimethylformamide.

  • PDF