• 제목/요약/키워드: sales forecasting

Search Result 113, Processing Time 0.026 seconds

A Study of Measuring Forecasting Accuracy Under Rromotion System (인위적인 수요창출 하에서 서비스부품의 수요예측의 정확도)

  • Rhee, Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.10-21
    • /
    • 2010
  • Promotion system can be used as strategical management weapon to enhance the sales power. Planned order system has some similarities with promotion system to create purchasing power and to supply the service parts with low price on purpose. The only difference is whether it is prearranged event or not. The effectiveness of forecasting has increased with normal state of ordering process. However, the accuracy of forecasting has diminished with irregular state of ordering, such as demand occurrences by unexpected climate change or intended planned order by the company. A planned order system is examined through the process of computing the effectiveness on the basis of forecasting in this paper. And it is suggested that how to increase the accuracy of forecasting capability under the planned order system.

Analysis of Automobile Industry Trends and Demand Forecasting of Monthly Automobile Sales in Chin (중국 내 자동차 산업 동향과 월별 판매량 시계열분석)

  • Chenyang, Wang;Se Won, Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.1
    • /
    • pp.35-48
    • /
    • 2023
  • In this study, we introduced the development status and the government policy of the Chinese automobile industry under the rapidly changing global economic environment. We conducted a consumer trend survey on automobile purchases by consumers in China. Despite the Chinese government's strong national emission control policy and stricter standards for manufacturing and selling internal combustion engine vehicles, 59.6% of respondents saying they would choose an internal combustion engine vehicle when purchasing a vehicle in the future for various reasons. It was confirmed that there is a significant gap between government policies and consumer perceptions. In addition, we have discovered the recent declining trend of automobile sales in China, and used the monthly sales volume from January 2010 to December 2020 as training set, and the sales volume from January 2021 to November 2022 as a test set. We proposed and evaluated a time-series model for predicting future automobile demand in China. Then, we showed the monthly sales forecast for 2023 when each model was applied.

A Comparative Analysis of Forecasting Models and its Application (수요예측 모형의 비교분석과 적용)

  • 강영식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.44
    • /
    • pp.243-255
    • /
    • 1997
  • Forecasting the future values of an observed time series is an important problem in many areas, including economics, traffic engineering, production planning, sales forecasting, and stock control. The purpose of this paper is aimed to discover the more efficient forecasting model through the parameter estimation and residual analysis among the quantitative method such as Winters' exponential smoothing model, Box-Jenkins' model, and Kalman filtering model. The mean of the time series is assumed to be a linear combination of known functions. For a parameter estimation and residual analysis, Winters', Box-Jenkins' model use Statgrap and Timeslab software, and Kalman filtering utilizes Fortran language. Therefore, this paper can be used in real fields to obtain the most effective forecasting model.

  • PDF

Representative Temperature Assessment for Improvement of Short-Term Load Forecasting Accuracy (단기 전력수요예측 정확도 개선을 위한 대표기온 산정방안)

  • Lim, Jong-Hun;Kim, Si-Yeon;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.39-43
    • /
    • 2013
  • The current representative temperature selection method with five cities cannot reflect the sufficient regional climate characteristics. In this paper, the new representative temperature selection method is proposed with the consideration of eight representative cities. The proposed method considered the recent trend of power sales, the climate characteristics and population distribution to improve the accuracy of short-term load forecasting. Case study results for the accuracy of short-term load forecasting are compared for the traditional temperature weights of five cities and the proposed temperature weights of eight cities. The simulation results show that the proposed method provides more accurate results than the traditional method.

Effect of Natural Disasters on Local Economies: Forecasting Sales Tax Revenue after Hurricane Ike

  • Ismayilov, Orkhan;Andrew, Simon A.
    • Journal of Contemporary Eastern Asia
    • /
    • v.15 no.2
    • /
    • pp.177-190
    • /
    • 2016
  • One of the main objectives of this paper is to provide insight to understand the effect of natural disasters on local government finance. That is, to analyze local governments' sales tax revenues after Hurricane Ike. Three Texas cities are examined: League City, Pearland, and Sugarland. Based on data collected from the Texas Comptroller's Office and the US Census, we found local governments experience a short-term increase in sales tax revenues and a long-term decline after the hurricane strike the region. On average, a major hurricane has a two-year impact on local government economy. The findings are essential for practitioners because in order to have a prosperous recovery after natural disasters, public managers have to prepare financially for short term changes in their sales tax revenues.

An Empirical Study of Financial Analyst's Forecasting Activities on the Firm's Operating Performances (기업실적에 대한 재무분석가의 예측활동에 관한 실증연구)

  • Kwak, Jae-Seok
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.93-124
    • /
    • 2003
  • This paper studies the financial analyst's forecasting activities on the firm's operating performance during the period from 1999 to 2003. In this study, financial analyst's forecasting activities are focused on the sales, operating income and net income and financial analyst's forecasting accuracy, forecasting revising patterns and forecasting activities to the unexpected firm's operating performance are studied. Some empirical findings in this study are as follows. First, standard estimate error on the sales, operating income and net income are all significantly negative value and so financial analyst's forecast on the firm's operating performance are upwardly biased. Second, domestic financial analyst's forecasting activities is relatively more accuracy than foreign financial analyst's forecasting activities. Third, forecasting time is more close to the end of the operating performance announcement day, forecasting activities are more accuracy. Fourth, comparing with individual financial analyst's forecast, consensus forecast is more accuracy. Fifth, in the comparative forecasting activities study according to the prior firm's operating performance, financial analyst's forecasting revision activities are found to be upward or downward. Sixth, financial analysts overreact in the sales forecast and underreact in the operating income and net income forecast. Seventh, in the empirical analysis on the Easterwood-Nutt's test model(1999) which the firm's performance change are divided into the expected performance change and the unexpected performance change, it is found that financial analyst's forecasting activities on the firm's operating performance are systematically optimistic.

  • PDF

A Development for Short-term Stock Forecasting on Learning Agent System using Decision Tree Algorithm (의사결정 트리를 이용한 학습 에이전트 단기주가예측 시스템 개발)

  • 서장훈;장현수
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The basis of cyber trading has been sufficiently developed with innovative advancement of Internet Technology and the tendency of stock market investment has changed from long-term investment, which estimates the value of enterprises, to short-term investment, which focuses on getting short-term stock trading margin. Hence, this research shows a Short-term Stock Price Forecasting System on Learning Agent System using DTA(Decision Tree Algorithm) ; it collects real-time information of interest and favorite issues using Agent Technology through the Internet, and forms a decision tree, and creates a Rule-Base Database. Through this procedure the Short-term Stock Price Forecasting System provides customers with the prediction of the fluctuation of stock prices for each issue in near future and a point of sales and purchases. A Human being has the limitation of analytic ability and so through taking a look into and analyzing the fluctuation of stock prices, the Agent enables man to trace out the external factors of fluctuation of stock market on real-time. Therefore, we can check out the ups and downs of several issues at the same time and figure out the relationship and interrelation among many issues using the Agent. The SPFA (Stock Price Forecasting System) has such basic four phases as Data Collection, Data Processing, Learning, and Forecasting and Feedback.

Product Life Cycle Based Service Demand Forecasting Using Self-Organizing Map (SOM을 이용한 제품수명주기 기반 서비스 수요예측)

  • Chang, Nam-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.37-51
    • /
    • 2009
  • One of the critical issues in the management of manufacturing companies is the efficient process of planning and operating service resources such as human, parts, and facilities, and it begins with the accurate service demand forecasting. In this research, service and sales data from the LCD monitor manufacturer is considered for an empirical study on Product Life Cycle (PLC) based service demand forecasting. The proposed PLC forecasting approach consists of four steps : understanding the basic statistics of data, clustering models using a self-organizing map, developing respective forecasting models for each segment, comparing the accuracy performance. Empirical experiments show that the PLC approach outperformed the traditional approaches in terms of root mean square error and mean absolute percentage error.

  • PDF

A Study on the Optimal Trading Frequency Pattern and Forecasting Timing in Real Time Stock Trading Using Deep Learning: Focused on KOSDAQ (딥러닝을 활용한 실시간 주식거래에서의 매매 빈도 패턴과 예측 시점에 관한 연구: KOSDAQ 시장을 중심으로)

  • Song, Hyun-Jung;Lee, Suk-Jun
    • The Journal of Information Systems
    • /
    • v.27 no.3
    • /
    • pp.123-140
    • /
    • 2018
  • Purpose The purpose of this study is to explore the optimal trading frequency which is useful for stock price prediction by using deep learning for charting image data. We also want to identify the appropriate time for accurate forecasting of stock price when performing pattern analysis. Design/methodology/approach In order to find the optimal trading frequency patterns and forecast timings, this study is performed as follows. First, stock price data is collected using OpenAPI provided by Daishin Securities, and candle chart images are created by data frequency and forecasting time. Second, the patterns are generated by the charting images and the learning is performed using the CNN. Finally, we find the optimal trading frequency patterns and forecasting timings. Findings According to the experiment results, this study confirmed that when the 10 minute frequency data is judged to be a decline pattern at previous 1 tick, the accuracy of predicting the market frequency pattern at which the market decreasing is 76%, which is determined by the optimal frequency pattern. In addition, we confirmed that forecasting of the sales frequency pattern at previous 1 tick shows higher accuracy than previous 2 tick and 3 tick.

An Exploratory Study on Forecasting Sales Take-off Timing for Products in Multiple Markets (해외 복수 시장 진출 기업의 제품 매출 이륙 시점 예측 모형에 관한 연구)

  • Chung, Jaihak;Chung, Hokyung
    • Asia Marketing Journal
    • /
    • v.10 no.2
    • /
    • pp.1-29
    • /
    • 2008
  • The objective of our study is to provide an exploratory model for forecasting sales take-off timing of a product in the context of multi-national markets. We evaluated the usefulness of key predictors such as multiple market information, product attributes, price, and sales for the forecasting of sales take-off timing by applying the suggested model to monthly sales data for PDP and LCD TV provided by a Korean electronics manufacturer. We have found some important results for global companies from the empirical analysis. Firstly, innovation coefficients obtained from sales data of a particular product in other markets can provide the most useful information on sales take-off timing of the product in a target market. However, imitation coefficients obtained from the sales data of a particular product in the target market and other markets are not useful for sales take-off timing of the product in the target market. Secondly, price and product attributes significantly influence on take-off timing. It is noteworthy that the ratio of the price of the target product to the average price of the market is more important than the price ofthe target product itself. Lastly, the cumulative sales of the product are still useful for the prediction of sales take-off timing. Our model outperformed the average model in terms of hit-rate.

  • PDF