This study suggested how to apply it decision-making of product development rapidly by design evaluation process to objectify and the result to quantify with viewpoint of design evaluation sets to marketability. Coverage of this method limited to the evaluation stage of design concept. The procedure of study, first of all, referred to some type of design evaluation method and their feature. And next, referred to some kinds of demand forecasting for marketing. Above an, this study focused on the method of demand forecasting by buying intentions surveys proper to the marketability evaluation of new product design. On a case study, I had investigated preference survey and buying intentions surveys about the design proposal of "language master audio". I selected the best design proposal through the conjoint analysis and also investigated demand forecasting. First, on the basis of buying intentions surveys, choose population and had produced buying demand, awareness demand, potential demand. I could estimate some profit to take out expense and cost from the buying demand. This estimated profit is marketability judgement data of product design at the design concept stage and can be utilized to measurable data for decision-making of product development. Through the case study, this method could forecast a target demand, and even if it is some difference between real sales volume, but the case study could verified that this method is effective to the evaluation of marketability in case of completely new product got on the typical category and the product category could be set up the population clearly.
Purpose - The purpose of this paper is to examine how clothing retail buyers (i.e., retail buyers, merchandisers, and storeowners), who are involved in assortment planning and retail buying use assortment criteria in their decisions. Comparisons are made between criteria used by men's wear and women's wear retail buyers as well as criteria used by male and female retail buyers. Research design, data, and methodology - A structured questionnaire was developed to collect data both in English and Korean. After conducting two pilot tests, the survey was conducted in Seoul, South Korea. Mantrala et al.'s 17 inputs of product assortment planning model with 23 assortment criteria from other previous studies were used. Results - Significant differences existed in consideration of assortment criteria between men's wear and women's wear retail buyers as well as between male and female retail buyers. Men's wear retail buyers rated the importance of sales history criteria (i.e., sales history, previous year's sales of same/similar styles) significantly lower than women's wear buyers did. Female retail buyers rated sales history criteria and weather criteria (i.e., unpredicted weather change, forecasting information of weather) significantly higher than male retail buyers did. Conclusions - This study provides guidelines for retail buyers regarding what criteria to use in what situations and how to organize assortment criteria from the most important criterion to the least one. In addition, the findings help them understand other retail buyers' buying behavior.
본 연구에서는 웹 마이닝을 이용하여 기업과 소비자간 전자상거래(Business-To-Customer Electronic Commerce)환경에 기초한 가상상점(Cyber market)의 상품 관리자 입장에서 효율적인 상품관리를 가능케 하는 시스템적 접근방법을 통한 상품관리 방법론을 제시하고자 한다. 또한 이 상품 관리 방법론을 실제 웹 상에서 운영되고 있는 가상상점에 직접 적용하여 봄으로써 실증적인 예를 보여주고자 한다.
In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.
인공지능 기술의 발전으로 인해 여행 및 호텔 산업에서도 다양한 목적의 인공지능과 기계학습 기법이 활용되고 있다. 특히 관광 산업에서는 수요 예측이 매우 중요한 요소로 인식되는데, 이는 서비스 효율성과 수익 극대화에 직접적인 영향을 미치기 때문이다. 수요 예측 시 시간에 따라 변화하는 데이터 흐름을 고려해야 하며, 이를 위해 통계적 기법과 기계학습 모델이 사용된다. 최근에는 수요 예측 데이터의 다양성과 현실의 복잡성을 반영하고자 기존 모델의 변형과 통합 연구가 진행되고 있으며, 그 결과 불확실성과 변동성에 대한 예측 성능이 향상되었음이 보고되고 있다. 본 연구에서는 기존 호텔수요 예측 연구에서 시도되지 않았던 다양한 기계학습 접근법을 통합하여 호텔 판매 수요 예측 정확도를 높이는 새로운 모델을 제안한다. 구체적으로 DTW K-means 클러스터링을 통해 지역모델을 구축하고, 전체 데이터를 활용한 전역모델과 선택적으로 결합하는 XGBoost 기반 시계열 예측 모델을 제시한다. 제안 모델은 지역과 전역 모델의 장점을 살려 호텔 수요 예측 성능을 제고할 것으로 기대된다. 이는 호텔 및 여행 산업 성장에 기여할 뿐만 아니라, 향후 다른 경영 분야 예측에도 확장 적용될 수 있을 것이다.
Forecasting have qualitative and quantitative methods. Quantitative one analyze macro-economic factors such as the rate of exchange, oil price, interest rate and also predict the micro-economic factors such as sales and demands. Applying various statistical methods depends on the type of data. when data has seasonality and trend, Time Series analysis is proper but when it has casual relation, Regression analysis is good for this. Time Series and Regression can be used together. This study investigate artificial neural networks which is predictive technique for casual relation and try to compare the accuracy of forecasting between regression analysis and artificial neural network.
한국시뮬레이션학회 1998년도 The Korea Society for Simulation 98 춘계학술대회 논문집
/
pp.101-105
/
1998
A large system predictor, which can perform prediction of sales trend in a huge number of distribution centers, is presented using neural predictive model. There are 20,000 number of distribution centers, and each distribution center need to forecast future demand in order to establish a reasonable inventory policy. Therefore, the number of forecasting models corresponds to the number of distribution centers, which is not possible to estimate that kind of huge number of accurate models in ERP (Enterprise Resource Planning)module. Multilayer neural net as universal approximation is employed for fitting the prediction model. In order to improve prediction accuracy, a sequential simulation procedure is performed to get appropriate network structure and also to improve forecasting accuracy. The proposed simulation procedure includes neural structure identification and virtual predictive model generation. The predictive model generation consists of generating virtual signals and estimating predictive model. The virtual predictive model plays a key role in tuning the real model by absorbing the real model errors. The complement approach, based on real and virtual model, could forecast the future demands of various distribution centers.
웹 마이닝은 e-Business 환경하에서 존재하는 대량의 웹 데이터에 데이터 마이닝 기법을 적용하여 유용하고 이해 가능한 정보를 추출해내는 과정을 의미하는데, 성공적인 e-Business전개를 위한 핵심적인 기술이다. 본 논문은 인공지능 기법에 기반한 웹마이닝 기술을 활용하여 e-Business상의 온라인 고객의 특성을 분석할 수 있는 data visualization system과 구매 판매 예측시스템의 효과적인 구조와 핵심적인 분석절차를 제안하였다.
Journal of information and communication convergence engineering
/
제2권2호
/
pp.116-118
/
2004
In the power industry after restructuring of Power industry will be appeared on-site type business, power retail sales business, and power wholesales business, power dealing business, customer inclination business & delivery of power facilities. Among them, power trade business, customer inclination business and on-site type business will be rapidly increased and occupied attention. In addition, it is forecasted to advent the broker, provider, market place, power marketer, system operator and generator as a main player. Meanwhile, it needs protection of existing power industry and activation of new energy market for accomplishment of restructuring of power industry.
상품 판매량의 변화를 예측하는 것은 기업의 경영에 있어서 매우 중요한 요소이며, 상품의 재고 관리 등에 큰 도움을 줄 수 있다. 최근 여러 분야에서 그동안 수집된 방대한 양의 빅데이터를 분석하여 마케팅에 활용하려는 연구가 진행 중이다. 이 논문에서는 상품 판매 빅데이터로부터 고객의 특성에 따른 상품 판매량과 고객 특성별 상품 판매량의 변화 추이를 분석하고, 분석 결과를 바탕으로 각 상품별 판매량을 예측할 수 있는 방법을 제안한다. 이 방법을 활용하면 고객의 변화에 따른 상품의 판매량을 예측할 수 있으므로, 기업 경영에 있어서 생산관리, 전략수립, 마케팅 등에서 큰 효과를 얻을 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.