• 제목/요약/키워드: safety work model

검색결과 671건 처리시간 0.03초

태양열/공기열 복합 집열기를 가지는 하이브리드 히트펌프 시스템의 열성능에 관한 연구 (Study on the Thermal Performance of a Solar Assisted Heat Pump System with a Hybrid Collector)

  • 도규형;최병일;한용식;김명배;김태훈
    • 한국수소및신에너지학회논문집
    • /
    • 제27권2호
    • /
    • pp.182-191
    • /
    • 2016
  • In the present work, a solar assisted heat pump (SAHP) system with a hybrid collector was analyzed. For this, a simplified thermodynamic model was developed. Based on the proposed model, the heat transfer rate, COP, and the annual operating hour of the SAHP system were estimated. The effect of the variation of system design parameters on the performance of the system was also examined. From the results, the performance was improved with increasing the effectiveness of heat exchangers and decreasing the difference between the evaporation temperature and the outlet brine temperature of the hybrid collector loop. Finally, the performance of SAHP system with a hybrid collector was compared with that of conventional serial and parallel SAHP systems. The SAHP system with a hybrid collector was substantially better than a series system and slightly worse than a parallel system for both the yearly averaged heat transfer rate and COP. However, the annual operating hour of the SAHP system with a hybrid collector was much better than that of a parallel system.

Topological optimization procedure considering nonlinear material behavior for reinforced concrete designs

  • Franca, Marcela Bruna Braga;Greco, Marcelo;Lanes, Ricardo Morais;Almeida, Valerio Silva
    • Computers and Concrete
    • /
    • 제17권1호
    • /
    • pp.141-156
    • /
    • 2016
  • The search for new structural systems capable of associating performance and safety requires deeper knowledge regarding the mechanical behavior of structures subject to different loading conditions. The Strut-and-Tie Model is commonly used to structurally designing some reinforced concrete elements and for the regions where geometrical modifications and stress concentrations are observed, called "regions D". This method allows a better structural behavior representation for strength mechanisms in the concrete structures. Nonetheless, the topological model choice depends on the designer's experience regarding compatibility between internal flux of loads, geometry and boundary/initial conditions. Thus, there is some difficulty in its applications, once the model conception presents some uncertainty. In this context, the present work aims to apply the Strut-and-Tie Model to nonlinear structural elements together with a topological optimization method. The topological optimization method adopted considers the progressive stiffness reduction of finite elements with low stress values. The analyses performed could help the structural designer to better understand structural conceptions, guaranteeing the safety and the reliability in the solution of complex problems involving structural concrete.

A water treatment case study for quantifying model performance with multilevel flow modeling

  • Nielsen, Emil K.;Bram, Mads V.;Frutiger, Jerome;Sin, Gurkan;Lind, Morten
    • Nuclear Engineering and Technology
    • /
    • 제50권4호
    • /
    • pp.532-541
    • /
    • 2018
  • Decision support systems are a key focus of research on developing control rooms to aid operators in making reliable decisions and reducing incidents caused by human errors. For this purpose, models of complex systems can be developed to diagnose causes or consequences for specific alarms. Models applied in safety systems of complex and safety-critical systems require rigorous and reliable model building and testing. Multilevel flow modeling is a qualitative and discrete method for diagnosing faults and has previously only been validated by subjective and qualitative means. To ensure reliability during operation, this work aims to synthesize a procedure to measure model performance according to diagnostic requirements. A simple procedure is proposed for validating and evaluating the concept of multilevel flow modeling. For this purpose, expert statements, dynamic process simulations, and pilot plant experiments are used for validation of simple multilevel flow modeling models of a hydrocyclone unit for oil removal from produced water.

Performance evaluation and hysteretic modeling of low rise reinforced concrete shear walls

  • Nagender, T.;Parulekar, Y.M.;Rao, G. Appa
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.41-54
    • /
    • 2019
  • Reinforced Concrete (RC) shear walls are widely used in Nuclear power plants as effective lateral force resisting elements of the structure and these may experience nonlinear behavior for higher earthquake demand. Short shear walls of aspect ratio less than 1.5 generally experience combined shear flexure interaction. This paper presents the results of the displacement-controlled experiments performed on six RC short shear walls with varying aspect ratios (1, 1.25 and 1.5) for monotonic and reversed quasi-static cyclic loading. Simulation of the shear walls is then carried out by Finite element modeling and also by macro modeling considering the coupled shear and flexure behaviour. The shear response is estimated by softened truss theory using the concrete model given by Vecchio and Collins (1994) with a modification in softening part of the model and flexure response is estimated using moment curvature relationship. The accuracy of modeling is validated by comparing the simulated response with experimental one. Moreover, based on the experimental work a multi-linear hysteretic model is proposed for short shear walls. Finally ultimate load, drift, ductility, stiffness reduction and failure pattern of the shear walls are studied in details and hysteretic energy dissipation along with damage index are evaluated.

도시철도 전동차 유지보수체계의 개선에 관한 연구 (A Study on the Improvement for EMU Maintenance System of Urban Transit)

  • 김규중;이근오
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.87-92
    • /
    • 2010
  • Urban transit system must secure fast, safe and reliable transportation capacity as a metropolitan mass transit. For this purpose, it is important to make all the sub-systems (which consist of EMU, power feeding, signaling & telecommunication, railway, platform facility, and control system and so on) work well. To operate all the systems effectively and reliably, a maintenance measure optimal to each system's characteristics is needed to be established and executed. So, highly reliable maintenance should be performed. But, EMU maintenance methods suitable to its own model and EMU lines are not yet introduced. This study examined few examples mainly to secure reliability on a maintenance quality in operating method and the features of train maintenance system based on travel distance.

실내모형실험을 통한 히빙 이론에 관한 연구 (A Study on Heaving Phenomenon by Model Test)

  • 옥용관;임종철;권정근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1144-1156
    • /
    • 2008
  • In this paper, heaving phenomenon is analyzed by laboratory tests. A laboratory test is consist of building soft clay foundation in plane-strain soil tank, construction of retaining wall, and excavation work. And range of shear strain, and destruction shape about soft clay foundation is compared, and analyzed with results of proposal formula. Using this study, safety factor is suggested for heaving phenomenon in the construction of wall on the soft clay. Actual theory is suggested by this suggested safety factor. There are various proposal formula for heaving phenomenon. For example, Terzaghi & Peck, Tschebotarioff, Bjerrum & Eide(Experience formula) and so on. Terzaghi & Peck's proposal formula is chosen, compared with laboratory test's result and analyzed in this study. A soft clay used in study is assumed homogeneous. A Depth of foundation is enough to observe shear strain by heaving phenomenon. Retaining wall is enough hard not to have vertical displacement.

  • PDF

Discomfort Analysis in Computerized Numeric Control Machine Operations

  • Muthukumar, Krishnamoorthy;Sankaranarayanasamy, Krishnasamy;Ganguli, Anindya Kumar
    • Safety and Health at Work
    • /
    • 제3권2호
    • /
    • pp.146-153
    • /
    • 2012
  • Objectives: The introduction of computerized numeric control (CNC) technology in manufacturing industries has revolutionized the production process, but there are some health and safety problems associated with these machines. The present study aimed to investigate the extent of postural discomfort in CNC machine operators, and the relationship of this discomfort to the display and control panel height, with a view to validate the anthropometric recommendation for the location of the display and control panel in CNC machines. Methods: The postural discomforts associated with CNC machines were studied in 122 male operators using Corlett and Bishop's body part discomfort mapping, subject information, and discomfort level at various time intervals from starting to end of a shift. This information was collected using a questionnaire. Statistical analysis was carried out using ANOVA. Results: Neck discomfort due to the positioning of the machine displays, and shoulder and arm discomfort due to the positioning of controls were identified as common health issues in the operators of these machines. The study revealed that 45.9% of machine operators reported discomfort in the lower back, 41.8% in the neck, 22.1% in the upper-back, 53.3% in the shoulder and arm, and 21.3% of the operators reported discomfort in the leg. Conclusion: Discomfort increased with the progress of the day and was highest at the end of a shift; subject age had no effect on patient tendency to experience discomfort levels.

Scale Development and Validation to Measure Occupational Health Literacy Among Thai Informal Workers

  • Suthakorn, Weeraporn;Songkham, Wanpen;Tantranont, Kunlayanee;Srisuphan, Wichit;Sakarinkhul, Pokin;Dhatsuwan, Jakkapob
    • Safety and Health at Work
    • /
    • 제11권4호
    • /
    • pp.526-532
    • /
    • 2020
  • Background: The high incidence of work-related diseases and injuries among day-laborers and workers with no legal contracts (informal workers) has received the attention of the Thai authorities. Workers' low occupational health literacy (OHL) has been reasoned as one contributing factor. Absence of a valid tool has prevented assessment of informal workers' OHL. The aim of this study was to create a valid and reliable Occupational Health Literacy Scale within the context of Thai working culture (TOHLS-IF). Methods: This study used the mixed method approach to develop TOHLS-IF. Questions were generated using in-depth interviews and an extensive review of the literature. Experts' assessment confirmed the content validity of TOHLS-IF. The scales of its psychometric properties were assessed in a sample of 400 informal workers using cluster random sampling. Results: The final version of the TOHLS-IF comprises 38 items within 4 dimensions: Ability to Gain Access, Understanding, Evaluation, and Use of occupational health and safety information. Factor analysis identified items explaining 50.22% of the total variance. The final confirmatory analysis confirmed the model estimates were satisfactory for the construct. TOHLS-IF demonstrated a high internal consistency and satisfactory reliability (Cronbach's alpha = .98). Conclusion: The TOHLS-IF is a valid and reliable instrument to assess informal workers' OHL. The structural dimensions of this instrument are based on the concept of health literacy and Thai culture. Thai health professionals are encouraged to benefit from this instrument to assess their workers' OHL and apply findings as guidelines for effective occupational health and safety interventions.

An Efficient Taguchi Approach for the Performance Optimization of Health, Safety, Environment and Ergonomics in Generation Companies

  • Azadeh, Ali;Sheikhalishahi, Mohammad
    • Safety and Health at Work
    • /
    • 제6권2호
    • /
    • pp.77-84
    • /
    • 2015
  • Background: A unique framework for performance optimization of generation companies (GENCOs) based on health, safety, environment, and ergonomics (HSEE) indicators is presented. Methods: To rank this sector of industry, the combination of data envelopment analysis (DEA), principal component analysis (PCA), and Taguchi are used for all branches of GENCOs. These methods are applied in an integrated manner to measure the performance of GENCO. The preferred model between DEA, PCA, and Taguchi is selected based on sensitivity analysis and maximum correlation between rankings. To achieve the stated objectives, noise is introduced into input data. Results: The results show that Taguchi outperforms other methods. Moreover, a comprehensive experiment is carried out to identify the most influential factor for ranking GENCOs. Conclusion: The approach developed in this study could be used for continuous assessment and improvement of GENCO's performance in supplying energy with respect to HSEE factors. The results of such studies would help managers to have better understanding of weak and strong points in terms of HSEE factors.

연구용원자로 기본설계에 대한 예비 확률론적 안전성 평가 (Aspects of Preliminary Probabilistic Safety Assessment for a Research Reactor in the Conceptual Design Phase)

  • 이윤환
    • 한국안전학회지
    • /
    • 제34권3호
    • /
    • pp.102-110
    • /
    • 2019
  • This paper describes the work and results of the preliminary Probabilistic Safety Assessment (PSA) for a research reactor in the design phase. This preliminary PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, eight typical initiating events are selected regarding internal events during the normal operation of the reactor. Simple fault tree models for the PSA are developed instead of the detailed model at this conceptual design stage. A total of 32 core damage accident sequences for an internal event analysis were identified and quantified using the AIMS-PSA. LOCA-I has a dominant contribution to the total CDF by a single initiating event. The CDF from the internal events of a research reactor is estimated to be 7.38E-07/year. The CDF for the representative initiating events is less than 1.0E-6/year even though conservative assumptions are used in reliability data. The conceptual design of the research reactor is designed to be sufficiently safe from the viewpoint of safety.