• 제목/요약/키워드: safety work model

검색결과 673건 처리시간 0.026초

인간실수를 고려한 월성 원자력발전소 안전계통의 최적점검주기에 관한 연구 (Optimal Inspection Periods of Safety System of Wolsung Nuclear Power Plant Unit 1 with Human Error Consideration)

  • Mok, Jin-Il;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.9-18
    • /
    • 1994
  • 월성 원자력발전소의 안전계통은 비상사태시에만 작동하는 3분의 2논리로 구성되어 있다. 그들의 작동성을 보증하기 위해 이 안전계통은 주기적으로 점검되어진다. 본연구에서 사람의 실수가 고려되어진 3분의 2논리 구성 시스템에서의 불이용도가 계산되어졌다. 그리고 우리는 시험기간중에 사람의 실수또는 기계의 고장으로 인해 발전정지를 일으킬 확률을 구했다. 우리는 이 불이용도와 발전정지를 일으킬 확률을 둘다 고려하여 적정한 최적점검주기를 계산하였다. 이렇게 얻어진 점검주기와 현재 사용되는 점검주기를 비교하면 사람의 실수를 최소(8.24 $\times$ $10^{-6}$ )로 보았을때 최적점검주기는 현재 사용되는 점검주기 보다 조금 짧았고 사람의 실수를 최대 (4.44 $\times$ $10^{-4}$ )로 보았을 때 최적점검주기는 현재 사용하는 점검 주기보다 다소 긴 것으로 계산되어졌다.

  • PDF

수소가스 폭발의 물리화학적 특성 연구 (A Study on Physicochemical Characteristics of Hydrogen Gas Explosion)

  • 조영도
    • 한국가스학회지
    • /
    • 제16권1호
    • /
    • pp.8-14
    • /
    • 2012
  • 수소는 온실가스 배출을 저감하기 위한 미래 에너지로 고려되고 있지만, 폭발위험에 대한 문제점을 지니고 있다. 따라서 수소가 미래 에너지로 사용되기 위해서는 폭발위험에 대한 연구가 충분히 이루어져야 한다. 폭발위험은 폭발충격에 대한 이해 즉, 폭발과정에서 압력 상승속도에 대한 분석과 밀접한 관계가 있다. 본 연구에서는 폭발에 영향을 미치는 변수, 즉 연소 전후의 비열비, 화학평형상태에서 최대폭발압력, 그리고 연소속도, 이들 변수가 압력 상승속도에 미치는 영향을 살펴보았다. 화학평형상태에서 최대폭발압력과 연소속도는 압력 상승곡선에 큰 영향을 미치는 것을 알 수 있었고, 미연소 가스의 비열비는 초기압력 상승속도보다 최종압력 상승속도에 더욱 영향을 미치고, 연소가스의 비열비는 반대로 초기압력 상승속도에 더욱 큰 영향을 미치는 것을 알 수 있었다. 연소속도는 실험 데이터로부터 구하였으며 밀폐공간에서 수소가스 폭발에서는 폭연에서 폭굉으로 전이가 일어나기에는 연소속도가 매우 느림을 알 수 있었다.

Priority Setting for Occupational Cancer Prevention

  • Peters, Cheryl E.;Palmer, Alison L.;Telfer, Joanne;Ge, Calvin B.;Hall, Amy L.;Davies, Hugh W.;Pahwa, Manisha;Demers, Paul A.
    • Safety and Health at Work
    • /
    • 제9권2호
    • /
    • pp.133-139
    • /
    • 2018
  • Background: Selecting priority occupational carcinogens is important for cancer prevention efforts; however, standardized selection methods are not available. The objective of this paper was to describe the methods used by CAREX Canada in 2015 to establish priorities for preventing occupational cancer, with a focus on exposure estimation and descriptive profiles. Methods: Four criteria were used in an expert assessment process to guide carcinogen prioritization: (1) the likelihood of presence and/or use in Canadian workplaces; (2) toxicity of the substance (strength of evidence for carcinogenicity and other health effects); (3) feasibility of producing a carcinogen profile and/or an occupational estimate; and (4) special interest from the public/scientific community. Carcinogens were ranked as high, medium or low priority based on specific conditions regarding these criteria, and stakeholder input was incorporated. Priorities were set separately for the creation of new carcinogen profiles and for new occupational exposure estimates. Results: Overall, 246 agents were reviewed for inclusion in the occupational priorities list. For carcinogen profile generation, 103 were prioritized (11 high, 33 medium, and 59 low priority), and 36 carcinogens were deemed priorities for occupational exposure estimation (13 high, 17 medium, and 6 low priority). Conclusion: Prioritizing and ranking occupational carcinogens is required for a variety of purposes, including research, resource allocation at different jurisdictional levels, calculations of occupational cancer burden, and planning of CAREX-type projects in different countries. This paper outlines how this process was achieved in Canada; this may provide a model for other countries and jurisdictions as a part of occupational cancer prevention efforts.

Exercise Self-Efficacy as a Mediator between Goal-Setting and Physical Activity: Developing the Workplace as a Setting for Promoting Physical Activity

  • Iwasaki, Yoshie;Honda, Sumihisa;Kaneko, Shuji;Kurishima, Kazuhiro;Honda, Ayumi;Kakinuma, Ayumu;Jahng, Doosub
    • Safety and Health at Work
    • /
    • 제8권1호
    • /
    • pp.94-98
    • /
    • 2017
  • Background: Physical activity (PA) is ranked as a leading health indicator and the workplace is a key setting to promote PA. The purpose of this study was to examine how goal-setting and exercise self-efficacy (SE) during a health promotion program influenced PA level among Japanese workers. Methods: Using a cross-sectional study design, we surveyed 281 employees. The short version of the International Physical Activity Questionnaire was used to assess PA level. Exercise SE was assessed using a partially modified version of Oka's exercise SE scale. Personal goals were assessed as the total numbers of "yes" responses to five items regarding "details of personal goals to perform PA". A mediational model was used to examine whether exercise SE mediates between the number of personal goals and PA level. Results: The mean age of the participants was 46.3 years, 76.2% were men, and the most common occupational category was software engineer (30.6%). The average PA level per week exceeded the recommended level in 127 participants (45.2%). One hundred and eighty-four participants (65.5%) set some form of concrete personal goal to perform PA. The relationship between the number of personal goals and PA level was mediated by exercise SE. Conclusion: Our study showed that exercise SE mediates goal-setting and increases PA. The results suggest that the components of PA promotion programs should be tailored to enhance participants' confidence in performing PA.

원자력시설 해체 작업자 보호 및 사고 예방을 위한 가상현실 기반의 훈련 시스템 (The training system based on virtual environments to protect workers and to prevent incidents and accidents during decommissioning of nuclear facilities)

  • 정관성;문제권;최병선;윤태만
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2015년 정기학술대회
    • /
    • pp.294-297
    • /
    • 2015
  • Decommissioning of nuclear facilities should be accomplished by assuring the safety of workers because decommissioning activities of nuclear facilities are under high radioactivity and work difficulty. It is necessary that before decommissioning, the radiation exposure dose of workers has to be evaluated and assessed under the principle of ALARA (as low as reasonably achievable). Furthermore, to improve the proficiency of decommissioning environments, method and system need to be developed. The legacy methods of exposure dose measurement and assessment had the limitations to modify and simulate the exposure dose to workers prior to practical activities because those should be accomplished without changes of working routes under predetermined scenarios. To simulate a lot of decommissioning scenarios, decommissioning environments were designed in virtual reality. To simulate and assess the exposure dose to workers, human model also was designed in virtual environments. These virtual decommissioning environments made it possible to real-time simulate and assess the exposure dose to workers. It can be concluded that this system is able to protect from accidents and enable workers to improve his familiarization about working environments. It is expected that this system can reduce human errors because workers are able to improve the proficiency of hazardous working environments due to virtual training like real decommissioning situations. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  • PDF

Chemical Risk Assessment Screening Tool of a Global Chemical Company

  • Tjoe-Nij, Evelyn;Rochin, Christophe;Berne, Nathalie;Sassi, Alessandro;Leplay, Antoine
    • Safety and Health at Work
    • /
    • 제9권1호
    • /
    • pp.84-94
    • /
    • 2018
  • Background: This paper describes a simple-to-use and reliable screening tool called Critical Task Exposure Screening (CTES), developed by a chemical company. The tool assesses if the exposure to a chemical for a task is likely to be within acceptable levels. Methods: CTES is a Microsoft Excel tool, where the inhalation risk score is calculated by relating the exposure estimate to the corresponding occupational exposure limit (OEL) or occupational exposure band (OEB). The inhalation exposure is estimated for tasks by preassigned ART1.5 activity classes and modifying factors. Results: CTES requires few inputs. The toxicological data, including OELs, OEBs, and vapor pressure are read from a database. Once the substance is selected, the user specifies its concentration and then chooses the task description and its duration. CTES has three outputs that may trigger follow-up: (1) inhalation risk score; (2) identification of the skin hazard with the skin warnings for local and systemic adverse effects; and (3) status for carcinogenic, mutagenic, or reprotoxic effects. Conclusion: The tool provides an effective way to rapidly screen low-concern tasks, and quickly identifies certain tasks involving substances that will need further review with, nevertheless, the appropriate conservatism. This tool shows that the higher-tier ART1.5 inhalation exposure assessment model can be included effectively in a screening tool. After 2 years of worldwide extensive use within the company, CTES is well perceived by the users, including the shop floor management, and it fulfills its target of screening tool.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • 제6권4호
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

Feasibility Study of Submerged Floating Tunnels Moored by an Inclined Tendon System

  • Won, Deokhee;Kim, Seungjun
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1191-1199
    • /
    • 2018
  • Concepts of submerged floating tunnels (SFTs) for land connection have been continuously suggested and developed by several researchers and institutes. To maintain their predefined positions under various dynamic environmental loading conditions, the submerged floating tunnels should be effectively moored by reasonable mooring systems. With rational mooring systems, the design of SFTs should be confirmed to satisfy the structural safety, fatigue, and operability design criteria related to tunnel motion, internal forces, structural stresses, and the fatigue life of the main structural members. This paper presents a feasibility study of a submerged floating tunnel moored by an inclined tendon system. The basic structural concept was developed based on the concept of conventional cable-stayed bridges to minimize the seabed excavation, penetration, and anchoring work by applying tower-inclined tendon systems instead of conventional tendons with individual seabed anchors. To evaluate the structural performance of the new type of SFT, a hydrodynamic analysis was performed in the time domain using the commercial nonlinear finite element code ABAQUS-AQUA. For the main dynamic environmental loading condition, an irregular wave load was examined. A JONSWAP wave spectrum was used to generate a time-series wave-induced hydrodynamic load considering the specific significant wave height and peak period for predetermined wave conditions. By performing a time-domain hydrodynamic analysis on the submerged floating structure under irregular waves, the motional characteristics, structural stresses, and fatigue damage of the floating tunnel and mooring members were analyzed to evaluate the structural safety and fatigue performance. According to the analytical study, the suggested conceptual model for SFTs shows very good hydrodynamic structural performance. It can be concluded that the concept can be considered as a reasonable structural type of SFT.

Rust와 C/C++간 안전한 상호작용에 관한 연구의 맹점과 개선 모델 연구 (Limitations and Future Work Suggetion on Safe Interaction Model between Rust and C/C++)

  • 노태현;이호준
    • 정보보호학회논문지
    • /
    • 제33권2호
    • /
    • pp.345-351
    • /
    • 2023
  • 소프트웨어 개발이 가속화되고 프로그램들이 기하급수적으로 복잡해짐에 따라 취약점을 줄이고, 관리하는 비용도 같이 증가하였다. 이러한 흐름에서, 기존의 C/C++ 와 같이 비교적 취약점을 내포하기 쉬운 언어를 대체하고 소프트웨어의 안정성을 높이기 위해서 제시된 것이 바로 Memory Safety를 보장하는 Rust 프로그래밍 언어이다. 하지만, 구식 언어들과의 호환성 및 개발의 편리함을 높이기 위해 C/C++로 작성된 라이브러리를 Rust에서도 사용할 수 있도록 지원하고 있는데, 이러한 다중 언어 환경에서는 Rust 또한 안전하지 않다. C/C++에서 발생한 메모리 오염이 Rust 내에서 Null-pointer 역참조, Use-After-Free 및 Buffer-overflow 문제 등을 발생시킬 수 있는 원인이 된다. 이를 해결하기 위해 여러 Rust-C/C++ 격리 연구가 진행되었으나, 아직 기초 단계이다. 본 논문에서는 선행 연구들을 분석하여 공통적으로 간과된 맹점들을 실제 코드 분석과 함께 소개하고, 이를 바탕으로 Rust와 C/C++간의 안전한 상호작용 모델 연구의 올바른 방향을 제시한다.

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.