• Title/Summary/Keyword: safety work model

Search Result 682, Processing Time 0.03 seconds

Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length (확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구)

  • Lee, Byung-Kyu;Jang, Jae-Kil;Jeong, Jee-Yeon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

Quebec Serve and Protect Low Back Pain Study: What About Mental Quality of Life?

  • Douma, Nabiha Benyamina;Cote, Charles;Lacasse, Anais
    • Safety and Health at Work
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • Background: As of now, the impact of low back pain (LBP) and its chronic state, chronic low back pain (CLBP), on mental health-related quality of life (HRQOL) has never been investigated among police officers. The present investigation aims at studying this relationship using a biopsychosocial model. Methods: Between May and October 2014, a Web-based cross-sectional study was conducted among Quebec police officers (Quebec, Canada). Mental HRQOL was measured using the role emotional (RE) and the mental health (MH) domains of the SF-12v2 Health Survey. The impact of CLBP on mental HRQOL (as opposed to acute/subacute LBP or no LBP) was studied with a multivariate linear regression model. Results: Of the 3,589 police officers who participated in the study, 1,013 (28.4%) reported CLBP. The mean age of respondents was $38.5{\pm}8.7years$, and 32.0% were females. The RE (44.1/100) and MH (49.0/100) mean scores of the CLBP group were comparable with the scores found in populations suffering from cancer or heart diseases. Compared to officers without LBP, the presence of CLBP was significantly associated with lower RE (${\beta}$: -0.068; p = 0.003) and MH (${\beta}$: -0.062; p = 0.002) scores. These relationships were not found in the acute/subacute LBP group. Conclusion: Our results underscore how frequent CLBP is among police officers and how burdensome it is. Considering the importance of good physical and mental health for this occupational population, police organizations should be aware of this issue and contribute to the efforts toward CLBP prevention and management in the workplace.

Formulations of Job Strain and Psychological Distress: A Four-year Longitudinal Study in Japan

  • Mayumi Saiki;Timothy A. Matthews;Norito Kawakami;Wendie Robbins;Jian Li
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • Background: Different job strain formulations based on the Job Demand-Control model have been developed. This study evaluated longitudinal associations between job strain and psychological distress and whether associations were influenced by six formulations of job strain, including quadrant (original and simplified), subtraction, quotient, logarithm quotient, and quartile based on quotient, in randomly selected Japanese workers. Methods: Data were from waves I and II of the Survey of Midlife in Japan (MIDJA), with a 4-year followup period. The study sample consisted of 412 participants working at baseline and had complete data on variables of interest. Associations between job strain at baseline and psychological distress at follow-up were assessed via multivariable linear regression, and results were expressed as β coefficients and 95% confidence intervals including R2 and Akaike information criterion (AIC) evaluation. Results: Crude models revealed that job strain formulations explained 6.93-10.30% of variance. The AIC ranged from 1475.87 to 1489.12. After accounting for sociodemographic and behavioral factors and psychological distress at baseline, fully-adjusted models indicated significant associations between all job strain formulations at baseline and psychological distress at follow-up: original quadrant (β: 1.16, 95% CI: 0.12, 2.21), simplified quadrant (β: 1.01, 95% CI: 0.18, 1.85), subtraction (β: 0.39, 95% CI: 0.09, 0.70), quotient (β: 0.37, 95% CI: 0.08, 0.67), logarithm quotient (β: 0.42, 95% CI: 0.12, 0.72), and quartile based on quotient (β: 1.22, 95% CI: 0.36, 2.08). Conclusion: Six job strain formulations showed robust predictive power regarding psychological distress over 4 years among Japanese workers.

The effects of different factors on obstacle strength of irradiation defects: An atomistic study

  • Pan-dong Lin;Jun-feng Nie;Yu-peng Lu;Gui-yong Xiao;Guo-chao Gu;Wen-dong Cui;Lei He
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2282-2291
    • /
    • 2024
  • In this work we study the effects of different factors of dislocation loop on its obstacle strength when interacting with an edge dislocation. At first, the interaction model for dislocation and dislocation loop is established and the full and partial absorption mechanism is obtained. Then, the effect of temperature, size and burgers vector of dislocation loop are investigated. The relation between the obstacle strength and irradiation dose has been established, which bridges the irradiation source and microscale properties. Except that, the obstacle strength of C, Cr, Ni, Mn, Mo and P decorated dislocation loop is studied. Results show that the obstacle strength for dislocation loop decorated by alloy element decreases in the sequence of Cr, Ni, Mn, C, P and Mo, which could be used to help parameterize and validate crystal plasticity finite element model and therein integrated constitutive laws to enable accounting for irradiation-induced chemical segregation effects.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

A Study on Improvement of Aviation Maintenance Human Factors Training for Aviation Safety Promotion (항공안전증진을 위한 항공정비인적요인 교육훈련 개선방안 연구)

  • Kim, Chun-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2019
  • The purpose of this study is to establish the training standards for HF of aviation maintenance reflecting the growing relevance of aviation maintenance technicians' ability to perform their work for the safety and efficiency of airline operation. For this purpose, previous studies on the concept of human factors were examined, and the HF training standards of the advanced international aviation bureaus such as the International Civil Aviation Organization(ICAO), Federal Aviation Administration(FAA) and European Aviation Safety Agency(EASA) were compared with the operational technical standards of Korea Aviation Safety Law. In addition, the actual status of human factors education and training were examined for Korea's two full service carriers (FSC) and four of the low cost carriers (LCC). The study results revealed that Korea's human factors education and training standards were weak compared with international standards, and that most airlines were not able to systematically implement human factors education and training. These results complement the existing problem of training standards for aviation maintenance human factors in Korea and support the development of a standard model of the training course for aviation maintenance human factors which meets international standards.

A Study on the Safety Training System based on Virtual Reality in Large Scale Plant (대규모 플랜트에서의 가상현실 기반 플랜트 안전훈련 시스템에 관한 연구)

  • Lee, Jae Yong;Kim, Hyoung-Jin;Lee, Chunsik;Park, Chan Cook
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.55-60
    • /
    • 2019
  • To develop a plant safety training system using virtual reality technology, we constructed a training system for a large scale plant. Compared with safety training for small plants or unit equipment, many system configurations such as virtual plant model, in-process data processing, work instruction, etc. are required and integrated system works have been carried out. The target plant, RDS process, is a high-risk process(high-temperature, high-pressure) that takes into account the training scenarios that can be taken in the event of a leaking fire in the range and refer to the actual shutdown procedure. The proposed safety training integration system can be used in similar situations that can occur in the RDS process and can be a platform for safety training using virtual reality in a large plant.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

Preventive Occupational Health and Safety Expense Estimation Method based on Fatality Statistics and Progress Model (중대재해발생률 및 진도관리모델을 고려한 공사진척도별 적정 안전보건관리비 산정기법)

  • Yi, Kyoo-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.191-197
    • /
    • 2017
  • The safety nature of construction industry differs from that of manufacturing sector. For instance, accident risk level dramatically varies at each phase of construction process. Korean Occupational and Health Safety Act has been regulated OHS expense and it contributed reducing accident risk and enhancing safety culture for many years. However, although current regulation guides to use OHS expense proportionate to construction progress, it still allows late use of the expense. This study was conducted for the purpose of presenting methods of estimating a step-by-step OHS expense rate required at each construction phase. In order to do provide proper OHS expense schedule, it analysed accident risk of each construction phase by sorting out 1439 cases of construction site fatality reports, and proposed a method of generating appropriate OHS expense scheme according to its construction work progress characteristics. Both linear and sigmoidal S-curve model were used for the analysis, and the latter generally requires earlier use of OHS expense. By comparing the estimated OHS expense use schedule with current criteria, more than 27%p early use of OHS expense is required for the prevention of accident.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.