• Title/Summary/Keyword: safety work model

Search Result 671, Processing Time 0.033 seconds

A Study on the Establishment of a Container Terminal Safety Management Plan based on Risk Assessment (위험성평가 기반 컨테이너 터미널 안전관리계획 수립 방안 연구)

  • Hwi-Jin Kang;SangJun Han
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.873-882
    • /
    • 2022
  • Purpose: The purpose of this paper is to analyze accidents and potential risks occurring at container terminals and to conduct on safety management plans tailored to container terminals. Method: A model for establishing a safety management plan is presented through a case study of container terminal risk assessment and literature analysis. Result: According to the 'Statistics of Accidents in the Harbor Handling Industry', 2,800 people were killed or injured during port work for 10 years from 2011 to 2021. This corresponds to an occupational accident rate of one person every 1.5 days. As a method of improving these accidents and disasters, a highly effective safety management plan should be established to prevent the recurrence of accidents in accordance with the Special Act on Port Safety. It is proposed to establish a safety management plan that reflects the risk assessment of container terminals, safety organization, safety budget, safety rules, and safety education.

Analysis of Crane Accidents by Using a Man-Machine System Model (인간-기계 시스템 모델에 의한 크레인 사망재해 분석)

  • Park, Jae-Hee;Park, Tae-Joo;Lim, Hyun-Kyo;Seo, Eun-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.59-66
    • /
    • 2007
  • As the need of handling heavy materials increases, various cranes are used in industries. However, the effectiveness of crane also entails industrial accidents such as falling, constriction etc. In fact, the number of fatal accidents caused by crane is still high in Korea. To find out the causes of the accidents in terms of human error, we developed a man-machine system model that consists of two axes; human information processing and crane life cycle. In the human information processing dimension, we simplified it as five functions; sensing and perception, decision making and memory, response etc. In the crane life cycle dimension, we divided it into nine phases; design, production, operation etc. For the 152 fatal accident records during 1999-2006 years, we classified them into 45 cells made by two axes. Then we identified the preceding causes of the classified crane accident based on performance shaping factors. As the results of statistical analysis, the overall trend of crane fatal accidents was described. For the cause analysis, wrong decision making in work plan phase shows the highest frequency. Next, the poor information input in crane operation followed in accident frequency. In ergonomics view, the problems of interface design in displays and controls made 11.8% of fatal accidents. Following the analysis, several ergonomic design guidelines to prevent crane accidents were suggested.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

Finite element analysis of helmeted oblique impacts and head injury evaluation with a commercial road helmet

  • Fernandes, Fabio A.O.;de Sousa, R.J. Alves
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.661-679
    • /
    • 2013
  • In this work, the safety performance of a commercial motorcycle helmet already placed on the market is assessed. The assessed motorcycle helmet is currently homologated by several relevant motorcycle standards. Impacts including translational and rotational motions are accurately simulated through a finite element numerical framework. The developed model was validated against experimental results: firstly, a validation concerning the constitutive model for the expanded polystyrene, the material responsible for energy absorption during impact; secondly, a validation regarding the acceleration measured at the headform's centre of gravity during the linear impacts defined in the ECE R22.05 standard. Both were successfully validated. After model validation, an oblique impact was simulated and the results were compared against head injury thresholds in order to predict the resultant head injuries. From this comparison, it was concluded that brain injuries such as concussion and diffuse axonal injury may occur even with a helmet certified by the majority of the motorcycle helmet standards. Unfortunately, these standards currently do not contemplate rotational components of acceleration. Conclusion points out to a strong recommendation on the necessity of including rotational motion in forthcoming motorcycle helmet standards and improving the current test procedures and head injury criteria used by the standards, to improve the safety between the motorcyclists.

A Study on the Human body Model shocked Electric installation in Underwater (수중에서의 인체에 가해지는 전기적 현상에 관한 연구)

  • Woo, J.H.;Park, H.Y.;Song, W.C.;Kim, N.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1338-1339
    • /
    • 2008
  • In this paper, charging part by basic from Andrew's body model research to second a danger have affect on remaining and rehabilitation humans in space under water. The construction of a circuit make to Andrew's body model. It compare that voltages measure a hand, a breast, a groin and electric currents measure an arm, a breast, a leg with safety a limit of body through an electric current. Out of result, it research that magnitude and wave of body passing an electric current give the effect to the heart control a signal and it have affect on direct the ventricle of the heart in detail motion. A thing of this sort get through to the simulation by the ATP-Draw program. The results from above, it is publish one's research work with safety a limit electric angle take measurement of resistance a body in under water and to the voltage and electric current passing each parts.

  • PDF

A Study of the Job Stress in Auto Part Manufacturing Company (자동차부품 제조업체에서의 직무스트레스에 관한 연구)

  • Kim, Daesik;Kim, Yuchang
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.168-171
    • /
    • 2014
  • The job stress is rising as a social issue in all industries. So many manufacturing companies have been trying to prevent the job stress. Recently, the job stress is the important cause which lead to WMSDs, depressive disorder, anxiety disorder and sleep disturbance. However, the cause of the job stress is very variety. So management is very difficult. The purpose of this study is to investigate the group of the job stress by Karasek model from workers in auto part manufacturing company. The survey was using Karasek job stress model and was administered to 181 workers of auto part manufacturing company. Job demand median and job decision median was in 30.0 and 50.0. From this study, following results were obtained. 1) The gender of workers according to the groups of job stress was statistically significant(p<0.05). 2) The duration of working of workers according to the groups of job stress was statistically significant(p<0.05). 3) The intensity of work of workers according to the groups of job stress was statistically significant(p<0.01). The result of this study will help to identify the group of job stress and improve personal coping ability, systematic measure of company.

A Study on the Final Probabilistic Safety Assessment for the Jordan Research and Training Reactor (JRTR 연구용원자로에 대한 최종 확률론적 안전성평가)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.3
    • /
    • pp.86-95
    • /
    • 2020
  • This paper describes the work and the results of the final Probabilistic Safety Assessment (PSA) for the Jordan Research and Training Reactor (JRTR). This final PSA was undertaken to assess the level of safety for the design of a research reactor and to evaluate whether it is probabilistically safe to operate and reliable to use. The scope of the PSA described here is a Level 1 PSA, which addresses the risks associated with core damage. After reviewing the documents and its conceptual design, nine typical initiating events were selected regarding internal events during the normal operation of the reactor. AIMS-PSA (Version 1.2c) was used for the accident quantification, and FTREX was used as the quantification engine. 1.0E-15/yr of the cutoff value was used to deliminate the non-effective Minimal Cut Sets (MCSs) when quantifying the JRTR PSA model. As a result, the final result indicates a point estimate of 2.02E-07/yr for the overall Core Damage Frequency (CDF) attributable to internal initiating events in the core damage state for the JRTR. A Loss of Primary Cooling System Flow (LOPCS) is the dominant contributor to the total CDF by a single initiating event (9.96E-08/yr), and provides 49.4% of the CDF. General Transients (GTRNs) are the second largest contributor, and provide 32.9% (6.65E-08/yr) of the CDF.

Analysis Testing of Sociocultural Factors Influence on Human Reliability within Sociotechnical Systems: The Algerian Oil Companies

  • Laidoune, Abdelbaki;Rahal Gharbi, Med El Hadi
    • Safety and Health at Work
    • /
    • v.7 no.3
    • /
    • pp.194-200
    • /
    • 2016
  • Background: The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. Methods: The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Results: Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. Conclusion: The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.

Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

  • Suleiman, Abdulqadir M.;Svendsen, Kristin V.H.
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.345-352
    • /
    • 2015
  • Background: Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Methods: Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. Results: In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Conclusion: Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

A Systems Engineering Approach to Multi-Physics Analysis of CEA Ejection Accident

  • Sebastian Grzegorz Dzien;Aya Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.46-58
    • /
    • 2023
  • Deterministic safety analysis is a crucial part of safety assessment, particularly when it comes to demonstrating the safety of nuclear power plant designs. The traditional approach to deterministic safety analysis models is to model the nuclear core using point kinetics. However, this simplified approach does not fully reflect the real core behavior with proper moderator and fuel reactivity feedbacks during the transient. The use of Multi-Physics approach allows more precise simulation reflecting the inherent three-dimensionality (3D) of the problem by representing the detailed 3D core, with instantaneous updates of feedback mechanisms due to changes of important reactivity parameters like fuel temperature coefficient (FTC) and moderator temperature coefficient (MTC). This paper addresses a CEA ejection accident at hot full power (HFP), in which the underlying strong and un-symmetric feedback between thermal-hydraulics and reactor kinetics exist. For this purpose, a multi-physics analysis tool has been selected with the nodal kinetics code, 3DKIN, implicitly coupled to the thermal-hydraulic code, RELAP5, for real-time communication and data exchange. This coupled approach enables high fidelity three-dimensional simulation and is therefore especially relevant to reactivity initiated accident (RIA) scenarios and power distribution anomalies with strong feedback mechanisms and/or un-symmetrical characteristics as in the CEA ejection accident. The Systems Engineering approach is employed to provide guidance in developing the work in a systematic and efficient fashion.