• 제목/요약/키워드: safety navigation support service

Search Result 25, Processing Time 0.022 seconds

The Extention and Implementation of User-defined AIS AtoN for Marine Safety Information Service (해양안전정보서비스를 위한 사용자정의 AIS AtoN확장 및 실험)

  • Park, In-Hwan;Hwang, Seung-Wook;Lee, Seo-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.423-428
    • /
    • 2009
  • Recently, the marine traffics have been increased along with enlargement of overseas commerce. Increasing the marine traffic may make higher the risk of marine accidents. Especially, the rate of accidents on costal area are more frequently. As if the marine safety information can be afforded to vessel and shore, the accident rate would be down. AIS AtoN is the navigational safety support device which is subject to functional requirements of IALA and technical standards of ITU. In this paper, we extend and implement the user-defined specification of AIS AtoN with message 21 for AIS basic information, messsage 6 for status report and message 12/14 for safety management.

Development of status monitoring tools for KASS system operation (KASS 시스템 운영을 위한 상태감시 도구 개발)

  • Minhyuk SON;ByungSeok LEE
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.643-648
    • /
    • 2023
  • The Korea Augmentation Satellite System is an SBAS system being developed with the goal of providing SoL (Safety of Life) in accordance with ICAO (International Civil Aviation Organization) standards by December 2023. Monitoring the status of the system is essential for the continuous provision of KASS services, and a status monitoring tool should be developed for this purpose. The development of a status monitoring tool was divided into SYSRT (SYStem Real Time monitoring tool), SMSPP (Subsystem Monitoring Statistics tool for Post Processing) depending on the purpose. Tool development was completed through a series of procedures: requirements definition, design, development, and verification. To verify the status monitoring tool, the KASS system's real data (August 2023) were used to verify it, and the results were statistically analyzed to derive operating time and operating rate. It plans to use these tools to support continuous service provision for SoL service starting after this year.

Analysis on the Navigational Dangerous Elements in Southwestern Coastal Area of Korea (서남해 연안해역의 항행 위해요소에 관한 분석)

  • Baek, Won-Sun;Gim, Ok-Sok;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Since July 2006, marine traffic safety management system have been enforced to support the vessels transiting across the coastal area and the vessels coming in and out of ports in southwestern coastal area where heavy traffic density and marine casualties occurred frequently. The marine traffic volume for the marine traffic environmental assessment was measured by the information from RADAR and AIS system in the area. The distributions of marine casualties were analyzed in the main routes and traffic separation schemes during the last five years and the navigational dangerous elements were investigated with the influence of natural environment, the distribution of fisheries and survey questionnaire. Marine accidents of merchant ships have a tendency to decrease gradually but in case of fishing boats, the rate of marine accidents have a contrary results in this area during the last five years. The dangerous elements on navigation appeared to be the dense force from June to August, fisheries activities and the vessels which not follow the compulsory watch on VHF-band radio communication equipments.

  • PDF

Study on the Evaluation of Ship Collision Risk based on the Dempster-Shafer Theory (Dempster-Shafer 이론 기반의 선박충돌위험성 평가에 관한 연구)

  • Jinwan Park;Jung Sik Jeong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.462-469
    • /
    • 2023
  • In this study, we propose a method for evaluating the risk of collision between ships to support determination on the risk of collision in a situation in which ships encounter each other and to prevent collision accidents. Because several uncertainties are involved in the navigation of a ship, must be considered when evaluating the risk of collision. We apply the Dempster-Shafer theory to manage this uncertainty and evaluate the collision risk of each target vessel in real time. The distance at the closest point approach (DCPA), time to the closest point approach (TCPA), distance from another vessel, relative bearing, and velocity ratio are used as evaluation factors for ship collision risk. The basic probability assignments (BPAs) calculated by membership functions for each evaluation factor are fused through the combination rule of the Dempster-Shafer theory. As a result of the experiment using automatic identification system (AIS) data collected in situations where ships actually encounter each other, the suitability of evaluation was verified. By evaluating the risk of collision in real time in encounter situations between ships, collision accidents caused by human errora can be prevented. This is expected to be used for vessel traffic service systems and collision avoidance systems for autonomous ships.

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.