• Title/Summary/Keyword: safety factor of slope

Search Result 434, Processing Time 0.025 seconds

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF

Development Method of Early Warning Systems for Rainfall Induced Landslides (강우에 의한 돌발 산사태 예·경보 시스템 구축 방안)

  • Kim, Seong-Pil;Bong, Tae-Ho;Bae, Seung-Jong;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.

Reliability Analysis of Plane Failure in Rock Slope (암반사면의 평면파괴에 대한 신뢰성해석)

  • 장연수;오승현;김종수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.119-126
    • /
    • 2002
  • A reliability analysis is performed to investigate the influence of the uncertainty from few in-situ samples and inherent heterogeneity of the ground on the probability of failure for a rock cut slope. The results are compared with those of deterministic slope stability analysis. The random variables used are unit weight of the rock, the angle of potential slope of failure, and cohesion and internal friction angle of joints. It was found that the rock slope in which the factor of safety satisfied the minimum safety factor in the deterministic analysis has high probability of failure in the reliability analysis when the weak geological strata are involved in the cut slope. The probability of failure of rock slope is most sensitive to the mean and standard deviation of cohesion in rock joint among the random soil parameters included in the reliability analysis. Sensitivities of the mean values are larger than those of standard deviations, which means that accurate estimation of the mean for the in-situ geotechnical properties is important.

A Case Study of Rainfall-Induced Slope Failures on the Effect of Unsaturated Soil Characteristics (불포화 지반특성 영향에 대한 강우시 사면붕괴의 사례 연구)

  • Oh, Seboong;Mun, Jong-Ho;Kim, Tae-Kyung;Kim, Yun Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.167-178
    • /
    • 2008
  • Rainfall-induced slope failures were simulated by seepage and stability analyses for actual slopes of weathered soils. After undisturbed sampling and testing on a specimen of unsaturated conditions, a seepage analysis was performed under actual rainfall and it was found that the pore water pressure increased at the boundary of soil and rock layers. The safety factor of slope stability decreased below 1.0 and the failure of actual slope could be simulated. Under design rainfall intensity, the seepage analysis could not include the effects of the antecedent rainfall and the rainfall duration. Due to these limitations, the safety factor of slope stability resulted in above 1.0, since the hydraulic head of soil layers had not be affected significantly. In the analysis of another slope failure, the parameters of unsaturated conditions were evaluated using artificial neural network (ANN). In the analysis of seepage, the boundary of soil and rock was saturated sufficiently and then the safety factor could be calculated below 1.0. It was found that the failure of actual slope can be simulated by ANN-based estimation.

Stability Evaluation and Reinforcement Design Method of the Rock Slope (암반사면 안정성 평가 및 보강설계)

  • 안윤성;김연중
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.343-356
    • /
    • 1994
  • When most of the industry and social indirect facilities such as the large structure, power plant or road, rail-road are constructed, the new slope may lead to the slope failure. The failure models for slopes have been developed by using the results of in-situ and laboratory tests to investigate the mechanisms and types of the slope failure. The safety factor of a slope may be obtained based on the proposed model and the slope can be reinforced to meet the design criteria. The slope should be reinforced by using the optimum model that properly reflects the site condition, the method of reinforcement includes the increased safety factor either by decreasing a slope angle or by reinforcing the slope.

  • PDF

FPF(Fibrillated Polypropylene Fiber) Reinforcement Method for Slope Repair (사면보수보강을 위한 FPF 보강공법개발)

  • 김낙경;박동원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.257-264
    • /
    • 2001
  • This study presents the slope stability analysis results for the model slope test. The model slope was made of the soil reinforced by FPF(Fibrillated Polyprophylene Fiber). The shear strength properties of the soil reinforced by FPF fibers were evaluated through the direct shear tests. The model slope 1:1 and 1:1.5 were made and the load tests were performed. Back analysis using limit equilibrium method was carried out to evaluate the shear strength increase on the FPF reinforced slope. The factor of safety of the FPF reinforce slope increased about 23% over unreinforced slope.

  • PDF

Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall (울산 산사태 위험지역의 강우 침투 안정성 평가)

  • Kim, Jinwook;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.27-40
    • /
    • 2016
  • Conventional warning criteria for landslides due to rainfall in broad regions have limitations, because they did not have proper reflection of topography, forest physiognomy, and unsaturated soil properties, et al. This study suggested a new stability model for unsaturated slope analyses during rainfall, considering rainfall pattern, geomorphological characteristics (slope angle, soil depth), engineering properties of unsaturated soils, and tree surcharge and root reinforcement. Stability analysis not considering root reinforcement and tree surcharge tends to over-predict a factor of safety in unsaturated slopes. Developed slope stability model was used to build database on the factor of safety in unsaturated slopes during rainfall, and it was integrated with GIS to do quantitative risk analysis in landslide risk areas specified in Ulju. Landslide risk areas were located at downstream of the point with sudden drop in safety factor, as well as at regions with low safety factor during rainfall.

Groundwater Level Estimation on a Slope by NRCS model (NRCS 침투모형에 의한 경사진 사면의 지하수위 평가)

  • Moon, Young-Il;Shin, Dong-Jun;Oh, Tae-Suk;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.553-556
    • /
    • 2008
  • Slope-related disasters have been occurred in July and September due to the typhoon and concentrated precipitation. It is shown that rainfall is the most important factor which leads to slope-related disasters in Korea. In this paper, slope analysis was applied by rainfall intensity as a rain factor and was assumed that all rainfall would be infiltrated on the slope. Also, groundwater level on a slope was estimated by using SEEP/W program according to infiltration. Where, amount of Infiltration can be calculated by using NRCS model. Finally, safety factor on a slope was invested by groundwater level.

  • PDF

Slopes Risk Assessment Techniques through Pattern Classification (패턴분류를 통한 산지사면의 위험도 평가 기법)

  • Kim, Min-Seub;Kim, Jin-Young
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.189-199
    • /
    • 2015
  • Our country's leading granite weathered soil of the ground slope failures that occur in cutting slope most cases, it does not require in-depth to the shear strength most of the surface layer is affected by weathering (1~2 m) at a shallow depth close to the ground, it is important to identify the reliability. Based on the result obtained in actual field investigation, the field slope type was classified by each type of wedge slope, Infinite slope, finite slope -I and finite slope -II, and the slope stability was examined respectively. In addition, using the numerical analysis results, the relationship between the slope inclination angle and safety factor was analyzed and it tried to offer basic data to which the stability in the field slope was able to be estimated by analyzing the safety factor change of the slope according to the slope type. In this study, classified into four types of natural slope, safety factor estimation method by slope types is proposed through the numerical analysis. However, some limit exists in generalizing in this research because it does not test various case studies. Therefore, the case study of a wide range of various sypes to assess the safety of various types slope can be made, accommodate a wide range of field conditions reasonable risk evaluation criteria may be derived.

Partial safety factors for retaining walls and slopes: A reliability based approach

  • GuhaRay, Anasua;Baidya, Dilip Kumar
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.99-115
    • /
    • 2014
  • Uncertainties in design variables and design equations have a significant impact on the safety of geotechnical structures like retaining walls and slopes. This paper presents a possible framework for obtaining the partial safety factors based on reliability approach for different random variables affecting the stability of a reinforced concrete cantilever retaining wall and a slope under static loading conditions. Reliability analysis is carried out by Mean First Order Second Moment Method, Point Estimate Method, Monte Carlo Simulation and Response Surface Methodology. A target reliability index ${\beta}$ = 3 is set and partial safety factors for each random variable are calculated based on different coefficient of variations of the random variables. The study shows that although deterministic analysis reveals a safety factor greater than 1.5 which is considered to be safe in conventional approach, reliability analysis indicates quite high failure probability due to variation of soil properties. The results also reveal that a higher factor of safety is required for internal friction angle ${\varphi}$, while almost negligible values of safety factors are required for soil unit weight ${\gamma}$ in case of cantilever retaining wall and soil unit weight ${\gamma}$ and cohesion c in case of slope. Importance of partial safety factors is shown by analyzing two simple geotechnical structures. However, it can be applied for any complex system to achieve economization.