• Title/Summary/Keyword: safe speed and distance

Search Result 75, Processing Time 0.029 seconds

Hierarchical Object Recognition Algorithm Based on Kalman Filter for Adaptive Cruise Control System Using Scanning Laser

  • Eom, Tae-Dok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.496-500
    • /
    • 1998
  • Not merely running at the designated constant speed as the classical cruise control, the adaptive cruise control (ACC) maintains safe headway distance when the front is blocked by other vehicles. One of the most essential part of ACC System is the range sensor which can measure the position and speed of all objects in front continuously, ignore all irrelevant objects, distinguish vehicles in different lanes and lock on to the closest vehicle in the same lane. In this paper, the hierarchical object recognition algorithm (HORA) is proposed to process raw scanning laser data and acquire valid distance to target vehicle. HORA contains two principal concepts. First, the concept of life quantifies the reliability of range data to filter off the spurious detection and preserve the missing target position. Second, the concept of conformation checks the mobility of each obstacle and tracks the position shift. To estimate and predict the vehicle position Kalman filter is used. Repeatedly updated covariance matrix determines the bound of valid data. The algorithm is emulated on computer and tested on-line with our ACC vehicle.

  • PDF

Visual Precise Measurement of Pile Rebound and Penetration Movement Using a High-Speed Line-Scan Camera

  • Lim, Mee-Seub;You, Bum-Jae;Oh, Sang-Rok;Han, Song-Soo;Lee, Sang-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.341-346
    • /
    • 2002
  • When a construction company builds a high structure. many piles should be driven into the ground by a hammer whose weight is 7,000 kg in order to make the ground under the structure safe and strong. So. it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously. Especially- by adopting a line-scan CCD camera whose line rate is 20 ㎑. the measurement performance of dynamic characteristics of the pile at impact instant is improved dramatically.

GPS Data Collection and Application for the Analysis of Car Following Behavior (차량의 추종행태 분석을 위한 GPS 자료의 수집과 적용)

  • Woo, Yong-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.11-21
    • /
    • 2000
  • The travel behavior should be analysed microscopically for the traffic management of urban street. The car following theory which found out the correlation between the lead and the following vehicles is being widely used as basic data in many fields. As the vehicle position and its speed information can be received by GPS, this technique is recently applying to the various fields. For the case study the travel data were collected with two vehicles equipped with GPS receiver. The moving distance was calculated by the collected location data every 2 seconds and the speed variation was checked. And this study analysed and compared the acceleration and deceleration speed between the lead and the following vehicle. Finally, Regression model about the relationship between the acceleration and deceleration speed and the acceleration and deceleration distance was constructed. This model could be helpful for the road design and the regulation for the safe traffic management.

  • PDF

An Analytical Approach to Collision Avoidance between Two Encountering Ships (교항하는 두 선박간의 충돌회피에 관한 해석적 접근)

  • Park, Jeong-Hong;Kim, Jin-Whan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.21-22
    • /
    • 2011
  • In this study, an analytical algorithm for collision avoidance is proposed, which is applicable to designing collision avoidance maneuvers for two encountering ships. The minimum separation distance is defined and an appropriate maneuver sequence is computed for safe and effective collision avoidance. Two approaches: 1) collision avoidance through speed change and 2) collision avoidance through heading change, are considered, and the initiation point of the avoidance maneuver is computed analytically using the geometric configuration of the two encountering ships. To verify the feasibility of the proposed algorithm, numerical simulations are carried out using a set of ship-to-ship encountering scenarios.

  • PDF

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

An Adaptive Cruise Control Systems for Intelligent Vehicles in Accordance with Vehicles Distance (지능형 차량을 위한 차간거리에 따른 능동 주행 제어 시스템 연구)

  • Bae, Jong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1157-1162
    • /
    • 2013
  • This thesis describes the active cruise control which is a part of AVHS(Advanced Vehicle and Highway System) in the ITS(Intelligent Transportation Systems). The active cruise control is a system which recognizes some obstructions and vehicles in front, drives in safe speed and puts on the brake in dangerous situations as the driver simply turns on the switch without stepping on the accelerator and brake. PID controller is used in the speed-control by linearizing the longitudinal model of the vehicle, obstacle detecting algorithm which makes use of the laser scanner is proposed to recognize the situation in front and the system's performance is tested.

A Study on Evaluation of Consistency Using 3-Dimensional Sight Distance (3차원시거를 이용한 도로일관성 평가에 관한 연구)

  • Park, Je-Jin;Oh, Young-Wook;Kang, Jeong-Gyu;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.187-197
    • /
    • 2008
  • While driving a highway, A driver gets lots of information through geometrical structure, traffic situation, signs on the road. He gets most of the information by visual sense. Acceleration or deceleration and driving direction depend on sight distance. Therefore, it's essential to secure a driver's sight distance for a safe drive. However, design guides of geometrical structure and sight distance suggest respective standards of horizontal and vertical alignment. They do not indicate quantitative standard of combined alignment. Currently, element separated on a two-dimensional projected plane are available, but they do not guarantee safe and pleasant design. I will use the existent model analysing three-dimensional sight distance through mathematical calculation and sort a variety of geometrical structure element and type. In these researches, we will look at how much three-dimensional sight distance is overestimated or underestimated compared to two-dimensional. I will develop a program which predicts traffic velocity on the curvature of two-lane provincial road. stopped sight distance and three-dimensional sight distance will be compared at a predicted drive velocity. I will suggest the way to evaluate road consistency.

A Study on the Proper Distance of Tubular Markers for Hi-Pass (하이패스 차로의 시선유도봉 적정 설치거리에 관한 연구)

  • Choi, Yoon-Hyuk;Choi, Kee-Choo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.3
    • /
    • pp.67-76
    • /
    • 2007
  • Although Hi-pass have been operated for alleviating traffic congestion and enhancing mobility in expressways since 2000, there is not any standard for safe operation. For that reason, we investigated about tubular markers, which is a typical facility for safety in Hi-pass. Tubular Markers are installed for separating same or opposite traffic flows spatially, supporting the marks at a place which has not only high possibility of accidents but distinguished carefulness of drivers. In this paper, it is noted two considerings; one is prevention of accident from the speed gap of autos and Hi-pass vehicles; the other is guarantee of necessary distance that Hi-pass vehicles could be changes the lanes for off-ramp. Focusing those considerations, it is proposed not only prefer distance of tubular markers, but also fundamental basic subjects. We anticipate that the results of this study would be useful reference in more safe and efficient tollgate operation of Hi-pass.

  • PDF

A Study on the Application of Variable Speed Limits(VSL) for Preventing Accidents on Freeways (고속도로 교통사고 예방을 위한 가변제한속도 적용방안 연구)

  • Park, Joon-Hyung;Hwang, Hyo-Won;Oh, Cheol;Chang, Myung-Soon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.111-121
    • /
    • 2008
  • Using variable speed limits (VSL) is a key strategy for preventing traffic accidents and alleviating traffic congestion. This study proposes an algorithm to operate VSLs on freeways for traffic safety. The proposed algorithm consists of two components based on accident likelihood estimation and analysis of safe stopping distance under various environmental conditions. A binary logistic regression technique is used for estimating accident likelihood. It is expected that the proposed algorithm would be successfully applied in practice in support of an integrated traffic and environmental condition monitoring system. Technical issues associated with the field implementation are also discussed.

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.